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Abstract

Increasingly, epistemologists are becoming interested in social struc-
tures and their effect on epistemic enterprises, but little attention has
been paid to the proper distribution of experimental results among
scientists. This paper will analyze a model first suggested by two
economists, which nicely captures one type of learning situation faced
by scientists. The results of a computer simulation study of this model
provide two interesting conclusions. First, in some contexts, a com-
munity of scientists is, as a whole, more reliable when its members are
less aware of their colleagues’ experimental results. Second, there is a
robust trade-off between the reliability of a community and the speed
with which it reaches a correct conclusion.



1 Introduction

Increasingly epistemologists have become interested in the relationship be-
tween “social” influences and proper epistemic behavior. The analysis of
this set of issues comes in one of two forms. One form is to consider the
proper response for epistemic agents when faced with evidence that comes
via another person (or persons). This type of analysis remains focused on
the traditional epistemic problems of individual belief formation and revi-
sion, but incorporates appropriate responses to data of a certain kind (cf.
Goldman 1999; Bovens and Harmann 2003).

Another approach focuses more on the structure of epistemic communi-
ties. This second type asks, given certain assumptions about the individu-
als in communities, what sort of community structures best serve the epis-
temic aim of that community? For example, Philip Kitcher (1990, 1993) and
Michael Strevens (2003a, 2002b) have recently looked at the impact that dif-
ferent methods for assigning credit have on communities of scientists. They
conclude that our current method of assigning credit is best for achieving the
desired results of science.

These two projects need not compete with one another. While it is pos-
sible that the best epistemic communities are made up of epistemically “sul-
lied” individuals, we have no a priori reason to think this is the case.! Neither
is it the case that a theory of proper individual epistemic conduct answers
all the question of community design. Once one fully articulates a theory of
individual epistemic rationality, it is still an open question what the optimal
community structure is for these agents — the individualistic question is only
part of the answer.

A community is made up of many facets, and there are many questions
to be answered when it comes to optimal epistemic communities. Here we
will be interested in one feature of communities, the structure of commu-
nication. Specifically we will ask: what is the best way for information to
be transmitted? In order to analyze this problem we will look at the prime
example of an epistemic community, science. In order to do this, we will
use a model first suggested by two economists, Venkatesh Bala and Sanjeev

'Some have suggested that the goals of epistemically virtuous communities may conflict
with the goal of epistemically virtuous individuals, primarily in discussing a community
virtue recently called the “division of cognitive labor” (cf. Popper 1975; Hull 1988; Kitcher
1990, 1993). While this certainly may be the case, more work is needed to demonstrate
that this virtue cannot be achieved in other ways.



Goyal (1998). The surprising result of this analysis is that in many cases a
community made up of less informed individuals is more reliable at learning
correct answers. Reducing information to scientists, one might expect would
also have the effect of making their convergence to the truth much slower,
and our model confirms this suspicion. The model suggests that there is
a robust tradeoff between speed and reliability that may be impossible to
overcome.

After presenting the model in Section 2, the results from a computer
simulation study of the model are presented in Section 3. Following that
the limitations of the model as a model of science are discussed in Section 4,
and Section 5 concludes by comparing the results of this model with another
problem discussed by Kitcher and Strevens.

2 The Model

Consider the following stylized circumstance. There are four medical re-
searchers working on a particular disease. They are confronted with a new
method of treatment which might be better or worse than the current, well-
understood, method of treatment. Work on the new treatment will help to
determine whether it is superior. Since the old treatment is well understood,
work on it will not result in any new information about its probability of
success, scientists’ efforts will only refine delivery methods or reduce harm-
ful side-effects. Suppose our scientists, labeled A, B, C', and D, assign the
following probabilities to the superiority of the new treatment: 0.33, 0.49,
0.51, and 0.66. They then each pursue the treatment method which they
think best. Two scientists, C' and D, will pursue the new treatment option
and two, A and B, the old. Suppose, further that the new treatment is
in fact better than the old but, as is perfectly possible, C' and D’s experi-
ments both suggest slightly against it. Specifically suppose all agree on these
probabilities:

P(The result of C’s experiment | New method is better) = 04
P(The result of D’s experiment | New method is better) = 0.4
P(The result of C’s experiment | New method is worse) = 0.6
P(The result of D’s experiment | New method is worse) = 0.6

After meeting and reporting their results to each other A, B, C, and D
now asses the probability of the new theory being better as 0.1796, 0.2992,
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0.3163, and 0.4632 respectively. As a result, none of them will pursue the new
treatment; we have lost a more beneficial treatment forever. This outcome is
far from extraordinary; given that the new methodology is better and the ex-
perimental outcomes are independent (conditioned on the new methodology
being superior), the probability of getting this result is 0.16.

This circumstance arises for two reasons. First, scientists in our example
must pursue evidence, they are not passive observers. Second, they already
have a good understanding of the old treatment and further study of it will
not help them to conclude anything about the new treatment.?

Even given this structure, the availability of the evidence contributes to
the abandonment of the superior theory. Had D not been aware of C’s result,
she would still have believed in the superiority of the new treatment.® As
a result, had she been unaware of C’s results, she would have performed a
second round of experiments, which would offer the opportunity to correct
the experimental error and thereby to find the truth. In this toy example,
it seems that the wide availability of experimental results was detrimental
to the group’s learning. Of course no general lesson can be drawn from this
example. It is not offered as a general model for all scientific practice but is
instead provided a generalization of a learning situation that some scientists
unquestionably face.

Two economists, Bala and Goyal (1998) present a very general model that
can be applied to circumstances like the one faced by the medical researchers.
Stated formally, in this model, there are two states of the world ¢; and ¢,
and two actions A; and A;. Action A; has the same expected return in
both states while Ay’s is lower in ¢; and higher in ¢5. Agents are aware of
the expected payoff in both states, but are unaware of which state obtains.
Agents have beliefs about the state of the world and in each period take the
action which has the highest expected utility given their beliefs. They receive
a payoff from their actions which is independently drawn for each player from
a common distribution with the appropriate mean. Each agent observes the

2Had the scientists been passive observers, their beliefs would not have influenced
the type of information they received. In that case, information about either treatment
might still arrive despite the fact that the theory has been abandoned. Additionally, had
experiments on the old theory been informative about the effectiveness of the new theory,
the fact that everyone pursues the old theory does not preclude them from learning about
the new theory.

3If D had only been aware of her own negative results, but not the results of C, her
posterior belief in the superiority of the new treatment would have been 0.5621.



outcome of his actions and the outcome of some others, and then updates
his beliefs based on simple Bayesian reasoning about the state of the world.*

This model has multiple interpretations, but one of them is analogous to
the circumstance discussed above. The agents are scientists and their action
is choosing which method to pursue. ¢; and ¢, respectively represent the
state where the current method and the new method is better. Bala and
Goyal endeavor to discover under what conditions correct convergence can
be guaranteed. They consider two different restrictions, restrictions on priors
and restrictions on information.

The second suggestion, limiting information, will be our primary focus
here. This restriction is achieved by limiting which other agents an individual
can “see,” and thus restricting the information on which an agent can update.
They do this by placing an agent on a graph and allowing her only to see
those agents with which she is directly connected.

Bala and Goyal consider agents arranged on a line where each agent can
only see those agents to the immediate left and right of them. If there are an
infinite number of agents, convergence in this model is guaranteed so long as
the agents’ priors obey some mild assumptions. Bala and Goyal also consider
adding a special group of individuals to this model, a “royal family.” The
members of the royal family are connected to every individual in the model.
If we now consider this new collection of agents, the probability of converging
to the wrong result is no longer zero! This is a remarkable result, because
it contradicts a basic intuition about science: that access to more data is
always better.” In this case, it is not.

The reason for this result is interesting. In the single line case the proba-
bility that everyone receives misleading results becomes vanishingly small as
the population grows to infinity. However, in the population with the royal
family, this probability no longer vanishes. Negative results obtained by the
royal family infect the entire network and mislead every individual. Once the

4«Simple” here means that the agent only updates her belief using the evidence from
the other’s experiment. She does not conditionalize on the fact that her counterpart
performed a particular experiment (from which she might infer the results of others).

°Ellison and Fudenberg (1995) present a different model which comes to the same con-
clusions. In their model, the interaction structure is not fixed, individual take a different
random sample of fixed size in each time period. Because the individuals in their model
have much shorter memories, it seems less appropriate for modeling scientific behavior
(an application which they do not consider). A similar conclusion can be found for even
individual learning in the work of Herron, Seidenfeld and Wasserman (1997). This work
presents a rather different learning situation and will not be discussed in detail here



Figure 1: A 10 person cycle, wheel, and complete graph

entire population performs act Ay, they can no longer distinguish between
the good and bad states because this action has the same expected payoff in
both ¢; and ¢5. As a result a population composed entirely of A; players
will never escape.

One might worry about Bala and Goyal’s results since they depend so
critically on the infinite size of the population. For finite populations, there
exists a positive probability that any population will not converge. One
might wonder, in these cases how much influence the “royal family” would
have on the population. Furthermore, it is unclear what moral we ought to
draw from these results — many things are different in the two different mod-
els. In addition to increased connectivity, there is also unequal distribution
of connections. If we are interested in evaluating the performance of actual
institutions it is unclear which features we should seek out. Through com-
puter simulations, we will endeavor to discover the influence that network
structure has on reliable learning in finite populations and also to develop
more detailed results regarding the relationship between network structure
and success.

3 Finite Populations

3.1 The “Royal Family” Effect

To begin, we will look at three graphs known as the cycle, the wheel, and
the complete graph (pictured in Figure 1) and compare their convergence
properties. The cycle is a finite analogy to Bala and Goyal’s line. Here
agents are arranged on a circle and only connected with those on either side
of them. The wheel is a cycle but one of the agents is connected to everyone
else, Bala and Goyal’s royal family. The last network is one where everyone
is connected to everyone.
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Figure 2: Learning results of computer simulations for the cycle, wheel, and
complete graphs

We will, unbeknownst to our agents, set the world in ¢,, where the new
methodology is better. We will then assign our agents random beliefs uni-
formly drawn from the interior of the probability space and allow them to
pursue the action they think best. They will then receive some return (a
“payoft”) that is randomly drawn from a distribution for that action. The
agents will then update their beliefs about the state of the world based on
their results and the results of those to which they are connected. A pop-
ulation of agents is considered finished learning if one of two conditions are
met. First, a population has finished learning if every agent takes action Ay,
in this case no new information can arrive which will convince our agents to
change strategies. (Remember that the payoff for action A; is the same in
both states, so it is uninformative.) Alternatively the network has finished
learning if every agent comes to believe that they are in ¢, with probability
greater than 0.9999. Although it is possible that some unfortunate sequence
of results could drag these agents away, it is unlikely enough to be ignored.

The results of a computer simulation are presented in Figures 2 and 3. In
Figure 2, the x-axis represents total number of agents and y-axis represents
the proportion of 10,000 runs that reached the correct beliefs.® The absolute

6 Although it is possible for a population to continue unfinished indefinitely, no popu-
lation failed to converge.
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Figure 3: Speed results of computer simulation for the cycle, wheel, and
complete graphs

probabilities should not be taken too seriously as they can be manipulated by
altering the expected payoffs for A; and A;. On the other hand, the relative
fact is very interesting. First, we have demonstrated that Bala and Goyal’s
results hold in at least some finite populations. In all the sizes studied the
cycle does better than the wheel. Second, we have shown that both of these
do better than the complete graph where each agent is informed of everyone
else’s results.

This demonstrates a rather counterintuitive result, that communities
made up of less informed scientists might well be more reliable indicators
of the truth than communities which are more connected. This also suggests
that it is not the unequal connectivity of the “royal family” that is the culprit
in these results. The harm done by the individual at the center cannot be
simply overcome by removing their centrality.

There is a benefit to complete networks, however; they are much faster.
Figure 3 shows the average number of generations it takes to reach the ex-
treme beliefs that constituted successful learning among those networks that
did reach those beliefs. Here we see that the average number of experimental
iterations to success is much lower for the complete network than for the
cycle, and the wheel lies in between. This suggests that, once networks get
large enough, a sacrifice of some small amount of accuracy for the gain of
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Figure 4: Density versus probability of successful learning

substantial speed might be possible.”

So far, we have only looked at the properties of three networks, the trend
seems to be that increased connectivity corresponds to faster but less reliable
convergence. This is generalizing from three, relatively extreme networks,
however. It would be good to engage in a more systematic survey.

3.2 Connectivity and Success

For relatively small sizes (less than seven) we can exhaustively search the
properties of all networks. The suggestion in the previous section, that de-
creased connectivity results in slower, but more reliable learning, can be
tested more extensively. In the previous section, connectivity was left as an
intuitive criterion. In fact, there are several graph statistics that correspond
to our notion of connectivity. Here, we will use density which represents the
percentage of possible connections that actually obtain in a graph.

Taking all networks (up to isomorphism) between size three and six we
can compare these statistics to network’s learning properties. These results

"The results for both reliability and speed are robust for these three networks across
modifications of both the number of strategies (and thus states) and the difference in payoff
between the good and uninformative actions. Although these different modifications do
effect the ultimate speed and reliability of the models, for any setting of the parameters
the relationship between the three networks remains the same.
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are presented in Figure 4.8 A regression among the largest group (networks
of size six) reveals that density is a stronger predictor of successful learn-
ing than any other common graph statistic. Only one other graph statistic
significantly improves the prediction beyond density alone, that is the cluster-
ing coefficient.’ This statistic measures the degree to which one’s neighbors
(those to whom an individual is connected) are connected to each other.
In both cases, the lower the statistic (i.e. the less dense and less clustered
a graph is) the higher the successful learning. In addition, the in-network
degree variance is not correlated with success, suggesting that it is not the
centrality of the wheel, but its high connectivity that results in its decrease
in reliability.'®

Examining the differences among the different finite cases is instructive.
It appears that sparsely connected networks have a much higher “inertia.”
This inertia takes two forms. First, an unconnected network experiences less
widespread change in strategy on a given round than a highly connected
network. The average number of people who change their strategies after
the A, players receive less than expectation is four times higher in a highly
connected network than a less connected network. Second, unconnected net-
works are less likely to occupy precarious positions than connected ones.
Conditioning on the network having only one As player, a highly connected
network is almost three times as likely to have no individuals playing A, on
the next round. Since there is only one new piece of evidence both cases,
the difference between the two networks is the result of individuals having
less extreme beliefs (i.e., closer to 0.5) in the connected network. Since all
networks have the same expected initial beliefs, this must be the result of
the information received by the agent.!!

8This is a result of running 10,000 trials for every graph, up to isomorphism, of size 6
or lower. The initial beliefs were independently drawn from a uniform distribution over
[0,1].

9In fact, there are two clustering coefficients in the literature. One from Newman et
al. (2002) is a slightly better predictor than one presented in Watts (1999) although the
difference is very small.

0The in-network degree variance measures the variability of the number of neighbors for
each agent in a network. This number will be high when certain agents are connected to
more people than the average, thus representing unequal connectivity. Since this statistic
is uncorrelated with success, we can conclude that the centrality of the royal family does
not influence its reliability.

1 The statistics reported here are comparing 100 runs of a complete six person networks
with the most reliable six person network pictured in Figure 5.
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Both of these results suggest that unconnected networks are more robust
to the occasional string of bad results than the connected network because
those strings are contained in a small region rather than spread to everyone
in the network. This allows the small networks to maintain some diversity in
behaviors that can result in the better action ultimately winning out if more
accurate information is forthcoming. This also explains why we observed the
stark difference in speeds for the cycle and complete networks in the previous
section. When bad information is contained so too is good information. In
fact, we find that this trade off is largely robust across networks.

An inspection of the five most reliable and five fastest networks suggests
that the features of a network that make it fast and those that make it accu-
rate are very different (see Figure 5). Four of the five most reliable graphs are
minimally connected — i.e., one cannot remove any edge without essentially
making two completely separate graphs. Conversely, the five fastest graphs
are highly connected, two of them are complete graphs, and the remaining
ones are one, two, and three edges removed from complete graphs. Figure 6
compares the average time to success and probability of success for networks
of size six. Here we find that there is a relationship between the accuracy of
a network and its speed. In fact, this graph shows that sometimes a small
increase in probability can result in a substantial increase in time to success.

This confirms the tradeoff suggested before, in order to gain the reliability
that limiting information provides, one must sacrifice other benefits, in this
case, speed. In fact, the tradeoff is even stronger than suggested here. These
results are only for cases where we specify that the new method is better.
When the uninformative action is better convergence is guaranteed but the
connectedness of the graph determines its speed.
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Figure 6: Speed versus accuracy for networks of size six

In the previous section, relationship between speed and size was a strange
one. For complete networks, as the network grew the average time to success
of these groups decreased. On the other hand, for wheels and cycles as the
network grew the average time to success increased. This diversity is verified
by the more complete analysis. There appears to be no correlation between
size and speed when all networks are considered.

Ultimately, there is no right answer to the question of whether speed or
reliability is more important — it will depend on the circumstance. Although
a small decrease in reliability can mean a relatively large increase in speed,
in some cases such sacrifices may not be worth making. If it is critical that
we get the right result no matter how long it takes we would prefer groups
where information is limited (without making the network disconnected). On
the other hand, if speed is important and correct results are not as critical
perhaps a more connected network is desired. It is not the intention of
this study to provide unequivocal answers to these questions, but rather to
demonstrate that such trade-offs do exist and that one can achieve increased
reliability by limiting information.
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4 The Right Model

There are three assumptions that underlie this model which might cause
some concern. They are:

1. The learning in our model is governed by the observation of payoffs.

2. There is a uninformative action whose expected payoff is well known
by all actors.

3. The informative action can take on one of very few expected payofts
and the possibilities are known by all actors.

The first assumption is of little concern. Here we use payoffs to symbolize
experimental outcomes. Payoffs that are closer to the mean are more likely,
which corresponds to experimental outcomes that are more likely on a given
theory. The payoffs are arranged so that an individual who maximizes her
expected payoff pursues the theory that she thinks is most likely to be true.
This fact allows this model to be applied to learning situations where individ-
uals are interested in finding the most effective theory (however effectiveness
is defined) and also to situations where individuals are interested in finding
the true theory. In either case the individuals behave identically.'?

The second and third assumptions are less innocuous. Similar conclusion
can be reached by analyzing another model which results from relaxing these
assumptions. Unfortunately, space prohibits a discussion of these results
here. It should not be presumed, however, that the Bala-Goyal model is
inapplicable. In fact, this model very closely mimics Larry Laudan’s (1996)
model of theory selection.

Laudan suggests that theory choice is a problem of maximizing expected
return. We ought to choose the theory that provides the largest expected
problem solving ability. Since we have often pursued a particular project for
an extended time before being confronted with a serious contender, we will
have a very good estimate of its expected utility. However, we will be less
sure about the new contender, but we could not learn without giving it a try.

Even beyond Laudan, there may be particular learning circumstances that
conform to these three assumptions. Bala and Goyal compare their model to
crop adoption in Africa. There, a new seed is introduced and farmers must

12This is not to say that true theories always have higher payoffs. Instead, this model
is so general as to apply to either circumstance.
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decide whether to switch from their current crop (whose yield is well known)
to another crop (whose yield is not). Experimental techniques and apparatus
may well follow a similar pattern.

5 Conclusion

Preventing failed learning in this model is very similar to the problem of
maintaining what Kitcher calls “the division of cognitive labor” (1990, 1993).
This is the problem of encouraging scientists to work on theories they believe
to be duds in order to secure an optimal community response. Maintaining
this division of labor prevents the abandonment of optimal theories when
experimental results are misleading or priors are biased. Kitcher’s solution
to this problem is to appeal to the economic interests of the scientists by
offering rewards to those who pursue other avenues. Kitcher (1990, 1993) and
Strevens (2003a, 2003b) suggest that our current method of giving rewards
to those who were the first to succeed has this effect.

This solution to the problem has the unfortunate consequence of being
incompatible with our theories of good epistemic behavior for individuals.
That is, scientists are doing well, under Kitcher’'s model, when they are
actively pursuing the theory they believe to be incorrect with the hopes
of gaining a big reward if the theory turns out to be true. Here we have
another possible solution to the problem which does not rely on that type
of epistemic impurity. Our scientist are genuinely pursuing those projects
which they deem to be most likely to succeed, but the division of labor has
been maintained sufficiently long by limiting the information available to our
scientists.

Even beyond the problem of maintaining the division of cognitive labor,
this model suggests that in some circumstances there is an unintended benefit
from scientists being uninformed about experimental results in their field.
This is not universally beneficial, however. In circumstances where speed is
very important or where we think that our initial estimates are likely very
close to the truth, connected groups of scientist will be more reliable. On
the other hand, when we want accuracy above all else, we should prefer
communities made up of more isolated individuals.
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