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2 2 Coherence 
Luc Bovens, Stephan Hartmann

Shows how to construct a coherence quasi-ordering that respects the claim that the more coherent a

set of propositions is, the greater the degree of con�dence ought to be in its content, ceteris paribus.

Applies this result to the problem of scienti�c-theory choice.

2.1 UNEQUAL PRIORS

In the previous chapter we showed that there cannot be a measure that induces a coherence ordering—i.e. a

binary relation which is complete, re�exive, and transitive—over the set of possible information sets. This

does not exclude the construction of a measure that induces a coherence quasi‐ordering—i.e. a binary

relation which is re�exive and transitive. So far we have only considered a special case—we have laid out a

procedure to order pairs of equal‐sized information sets that share the same prior probability that their

respective constitutive propositions are all true. In e�ect, we have partitioned the set of all information sets

into subsets S of information sets that have the same cardinality and the same prior joint probability .

Within each of these subsets S we have constructed a procedure to impose a quasi‐ordering over S. Let ‘⪰’ be

the binary relation of being no less coherent than. Then for pairs of information sets  and 

, our procedure can be stated as follows:

a0

S = {R1, … , Rn}

S′= {R′1, … ,R′n}

(2.1)
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For all S, S′∈S, if S and S′ have the same cardinality

andP (R1, … , Rn) = a0 = a′0 = P (R′1, … ,R′n), then S⪰S′ iff

P ∗ (R1, … , Rn) ≥ P ∗ (R′1, … ,R′n)for all values of the reliability

parameterr ∈ (0, 1).

In other words, S is no less coherent than  if and only if the curve representing the function for their

posterior joint probability for S is strictly above the curve for  over the interval . We have

assumed that the witnesses are equally reliable and will discuss this assumption in Section 2.4.

S′

S′ r ∈ (0, 1)

We should be able to do better than this. Our intuitive notion of one information set being no less coherent

than another information set is not restricted to information sets whose content is equally prob able nor

to information sets of the same cardinality. Let us look at a few examples.

p. 29

First, suppose that a murder has been committed in Tokyo. We are trying to locate the corpse and, given our

background knowledge, every square inch of Tokyo is just as likely a spot as every other square inch.

Suppose two witnesses independently point to a particular house. This is certainly coherent information.

Alternatively, suppose that one witness points to some broad area on the map and the other witness points

to an area that is no less broad. The overlap between both areas is a large district of Tokyo. There is little

doubt that the information in the �rst case is more coherent than the information in the second case. And

yet the prior probability that the information of the witnesses in the �rst case is true is much lower than the

prior probability that the information of the witnesses in the second case is true, for the house is a much

smaller region than the district.

Second, BonJour poses the following example of information sets that can clearly be ordered with respect to

their relative coherence. Consider the following two information sets: S = {[All ravens are black], [This bird

is a raven], [This bird is black]} and  {[This chair is brown], [Electrons are negatively charged], [Today

is Thursday]} (1985: 96). There is no doubt that set S is more coherent than set . And yet there is no reason

to assume that the prior probability that the information in S is true equals the prior probability that the

information in  is true.

S′=

S′

S′

Third, we also make judgements of relative coherence when the information sets are of unequal size. For

instance, consider the paradigm case of non‐monotonic reasoning. Certainly the information pair S = {[My

pet Tweety is a bird], [My pet Tweety cannot �y]} is less coherent than the information triple    {[My pet

Tweety is a bird], [My pet Tweety cannot �y], [My pet Tweety is a penguin]}. The inclusion of the

information that Tweety is a penguin is what brings coherence to the story. What we want is a measure that

induces a coherence quasi‐ordering over information sets in general, not just information sets of the same

size and with equal prior joint probabilities.

S′=

Various attempts have been made to provide a probabilistic account of the notion of coherence. In the

previous chapter we showed that the search for a measure that imposes a coherence ordering on the set of

information sets is in vain. However, a coherence quasi‐ordering should su�ce for the purposes of the

coherence theory of justi�cation. Thus, in this chapter, we will take on the project of showing how to

construct a general measure that imposes a coherence quasi‐ordering on the set of information sets.

p. 30

The notion of coherence also plays a role in philosophy of science. Kuhn (1977: 321–2, quoted in Salmon

(1990: 176) ) mentions consistency as one of the (admittedly imprecise) criteria for scienti�c theory choice

(along with accuracy, scope, simplicity, and fruitfulness). Salmon (1990: 198) distinguishes between the

internal consistency of a theory and the consistency of a theory with other accepted theories. In discussing

the latter type of consistency, he claims that there are two aspects to this notion, viz. the ‘deductive relations

of entailment and compatibility’ and the ‘inductive relations of �ttingness and incongruity’. We propose to
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think of the internal consistency of a theory in the same way as Salmon thinks of the consistency of a theory

with accepted theories. Hence, the internal consistency of a theory matches the epistemologist's notion of the

coherence of an information set: How well do the various components of the theory �t together, how

congruous are these components? Salmon also writes that this criterion of consistency ‘seem[s]…to pertain

to assessments of the prior probabilities of the theories’ and ‘cr[ies] out for a Bayesian interpretation’

(1990: 198). Following this line of thought, we will show how one can construct a coherence quasi‐ordering

over a set of scienti�c theories and how our relative degree of con�dence that one or another scienti�c

theory is true is functionally dependent on this quasi‐ordering. That the relation is a quasi‐ordering rather

than an ordering respects Kuhn's contention that consistency is an imprecise criterion of theory choice.

Indeed, in some cases, it is indeterminate which of two theories is more coherent.

2.2. CONSTRUCTING A MEASURE

We will construct a formal measure that permits us to read o� a coherence quasi‐ordering from the joint

probability distributions over the propositional variables whose positive values are constitutive of the

information sets. The problem with existing accounts of coherence is that they try to bring precision to our

intuitive notion of coherence independently of the particular role that it is meant to play. This is a

mistake. To see this, consider the following analogy. We not only use the notion of coherence when we talk

about information sets, but also, for example, when we talk about groups of individuals. Group coherence

tends to be a good thing. It makes ant colonies more �t for survival, it makes law �rms more e�cient, it

makes for happier families, etc. It makes little sense to ask what makes for a more coherent group

independently of the particular role that coherence is supposed to play in the context in question. We must

�rst �x the context in which coherence purports to play a particular role. For instance, let the context be ant

colonies and let the role be that of promoting reproductive �tness. We give more precise content to the

notion of coherence in this context by letting coherence be the property of ant colonies that plays the role of

boosting �tness and at the same time matches our pre‐theoretic notion of the coherence of social units. A

precise �ll‐in for the notion of coherence will di�er as we consider �tness boosts for ant heaps, e�ciency

boosts for law �rms, or happiness boosts for families.

p. 31

Similarly, it makes little sense to ask precisely what makes for a more coherent information set

independently of the particular role that coherence is supposed to play. The coherence theory of justi�cation

and the Kuhnian appeal to coherence as a criterion of theory choice ride on a particular common‐sense

intuition. When we gather information from independent and partially and equally reliable sources, the

more coherent the story is, the more con�dent we are that the story is true, ceteris paribus. Within the

context of information gathering from such sources, coherence is a property of information sets that plays a

con�dence‐boosting role.

In the previous chapter we derived a parsimonious expression for the posterior probability that the

information is true which we receive from independent witnesses who are partially and equally reliable:

(2.2)

P ∗ (R1, … , Rn) =
a0

∑n
i=0 ai

–r
i
.

Remember that , with r being the reliability parameter equal to . The true positive rate 

 is greater than the false positive rate  which is greater than

0 for     is the weight vector of the information set . Each 

–r := 1 − r 1 − q / p

p := P (REPRi Ri)∣ q := P (REPRi|¬Ri)

p. 32 i = 1, … , n. < a0, … , an > S = {R1, … , Rn}
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 is the sum of the joint probabilities of all combinations of i negative values  and  positive values 

 of the propositional variables .

ai ¬Rj n − i

Rj R1, … , Rn

A maximally coherent information set has the weight vector  with . Let us

assume that we are neither certain that the content of the information set is true nor certain that it is false.

All items of information  are equivalent, since  and 

 and the joint probabilities of all other combinations of propositions are set

at 0. If one of the remaining  , or  exceeds 0, then the items of information are no longer

equivalent and the information set loses its maximal coherence. It is some feature of  that

determines the coherence of the information set. For maximal coherence, it needs to be the case that 

for . But it is not clear at all what feature we are looking for when assessing and comparing

cases of non‐maximal coherence.

< a0, 0, … , 0, –a0 > –a0 := 1 − a0

R1, … , Rn a0 = P (R1, … , Rn)
–a0 = an = P (¬R1, … , ¬Rn)

a1, … an−1

< a0, … , an >

ai = 0

i = 1, … , n − 1

To determine this feature, here is how we will proceed. Suppose that we have a range of suspects for some

crime. We question the witnesses, who provide us information about what car the culprit was driving, the

culprit's accent, etc. All this information picks out a certain subset of the original suspects that satisfy all

these features. Let's suppose that only Jean and Pierre satisfy these features. The information that led us to

pick out Jean or Pierre may have been maximally coherent. For instance, it may be the case that each witness

provided a report that it was either Jean or Pierre who was the culprit. Or it may be the case that one witness

claimed that the culprit is from Marseille and the other witness claimed that the culprit is a sailor and that

all and only inhabitants from Marseille are sailors in our population of suspects. But the information may

also have been less coherent. One witness might have said that the suspect had a French accent and the

other witness that the suspect was a Presbyterian. The population of suspects contains a large subset of

suspects with French accents and a large subset of suspects who are Presbyterians, but only Jean and Pierre

are Presbyterians with French accents. We learned in the last chapter that for any particular value of the

reliability parameter r, our con�dence boost that either Jean or Pierre is the suspect is much greater when

the information comes to us in the form of maximally coherent information rather than in the form of less

than maximally coherent information. Our strategy will be to assess the coherence of an information set

by measuring the proportion of the con�dence boost that we actually receive, relative to the con�dence

boost that we would have received had we received this very same information in the form of maximally coherent

information.

p. 33

To put this formally, let us turn to our example of independent tests that identify sections on the human

genome that may contain the locus of a genetic disease. The tests pick out di�erent areas, and the overlap

between the areas is a region σ. The information is more coherent when the reports are all clustered around

the region σ than when they are scattered all over the human genome but have this relatively small area of

overlap on the region σ. The information is maximally coherent when every single test points to the region σ.

We assign a certain prior probability that the locus of the disease is in the region σ. With more coherent

reports, our con�dence boost will be greater than with less coherent reports. Let us measure this con�dence

boost by the ratio of the posterior probability—i.e. the probability after we have received the reports—over

the prior probability that the locus of the disease is in region σ:

(2.3)

b ({R1, … , Rn}) =
P ∗(R1,…,Rn)

P(R1,…,Rn) .

To determine this con�dence boost it is su�cient to know the weight vector  and the

reliability parameter r, since  equals  and since  is a function of the

weight vector and the reliability parameter.

< a0, … , an >

P (R1, … , Rn) a0 P ∗ (R1, … , Rn)
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If we had received the information that the locus of the disease is in region σ in the form of maximally

coherent information, then our information set would have contained n reports to the e�ect that the locus

of the disease was in region σ, i.e. . We can impose a probability measure  over the

propositional variables  with the corresponding weight vector . We insert

this weight vector into (2.2) and calculate what our degree of con�dence would have been that the locus of

the disease is in region σ, had we received the information as maximally coherent information:

{Rσ
1 , … , Rσ

n} P max

Rσ
1 , … , Rσ

n < a0, 0, … , 0, an >

(2.4)

P max∗ (Rσ
1 , … , Rσ

n) = a0
a0+–a0

–rn .

Hence, our con�dence boost would have beenp. 34

(2.5)

bmax ({R1, … , Rn}) =
pmax∗(Rσ

1 ,…,Rσ
n)

P max(Rσ
1 ,…,Rσ

n)

Since the prior probability , the proportion of the con�dence

boost that we actually receive, relative to the con�dence boost that we would have received, had we received

this very same information in the form of maximally coherent information, equals

P max (Rσ
1 , … , Rσ

n) = P (R1, … , Rn) = a0

(2.6)

cr ({R1, … , Rn}) =
b({R1,…,Rn})

bmax({R1,…,Rn})

=
P ∗(R1,…,Rn)/P(R1,…,Rn)

P max∗(Rσ
1 ,…,Rσ

n)/P max(Rσ
1 ,…,Rσ

n)

=
P∗(R1,…,Rn)

Pmax∗(Rσ
1 ,…,Rσ

n)

= a0+–a0
–rn

∑n
i=0 ai

–r
i .

This measure is functionally dependent on the reliability parameter r. Clearly, our pre‐theoretic notion of

the coherence of an information set does not encompass the reliability of the witnesses that provide us with

its content. So how can we use this measure to assess the relative coherence of two information sets?

Let us look at what we did in the special case in which information sets S and  have the same cardinality

and . We salvaged the core of Bayesian Coherentism by

imposing an ordering on a pair of information sets if and only if the curves representing the posterior

probabilities that the contents of the information sets are true as a function of r do not criss‐cross. Formally,

 if and only if  for all values of the reliability parameter 

. This permitted us to respect the �rst tenet of Bayesian Coherentism—viz. the more coherent an

information set is, the greater our degree of con�dence that its content is true, ceteris paribus—while

remaining faithful to a weakened version of the second tenet—viz. that the quasi‐ordering of being no less

coherent than is determined by the probabilistic features of the information set.

S′

P(R1, … , Rn) = a0 = a′0 = P(R′1, … ,R′n)

S ⪰ S′ P ∗ (R1, … , Rn) ≥ P ∗ (R′1, … ,R′n)

r ∈ (0, 1)

p. 35

In the general case, we would like to be able to assess and compare the coherence of information sets that

may not have the same cardinality and may not share the same joint prior probability that their respective

contents are true. Our strategy is to assess the coherence of an information set by measuring the proportion

of the con�dence boost that we actually receive, relative to the con�dence boost that we would have

received, had we received this very same information in the form of maximally coherent information. Also,
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in the general case we would like to be able to make the claim that the more coherent an information set is,

the greater this proportional con�dence boost, ceteris paribus, in which the ceteris paribus clause requires

that the reliability parameter r be held constant. Now we run into precisely the same problem that we ran

into before: Some pairs of information sets  are such that  for some values of r,

whereas  for other values of r. To safeguard our current claim, we follow the same strategy.

We impose an ordering on a pair of information sets if and only if the curves that represent the proportional

con�dence boosts as a function of r do not criss‐cross. In formal terms,

{S, S′} cr(S) > cr(S′)

cr(S′) > cr(S)

(2.7)

For all S,S′∈S, S⪰S′ iffcr (S) ≥ cr(S′) for all values of the

reliability parameterr ∈ (0, 1).

This procedure induces a quasi‐ordering on the set of information sets in general, whatever their

cardinalities and whatever the prior joint probabilities that their contents are true. We will see that this

distinction squares with our willingness to make intuitive judgements about the relative coherence of

information sets.

The reader may wonder whether our general‐case procedure entails our special‐case procedure. The answer

is straightforward. In the special case, we assume that the cardinalities of the information sets are equal and

that the prior probabilities that the contents of the information sets are true are equal—i.e. . From

(2.2) and (2.6), it follows that we can write the posterior joint probability that the content of the information

set is true as follows:

a0 = a′0

(2.8)p. 36

P ∗ (R1, … , Rn) = a0

a0+–a0
–rn cr ({R1, … , Rn}).

It is clear from (2.8) that

(2.9)

For all S, S′ ∈S, if S has cardinalitymand S′has cardinalityn

withm = nanda0 = a′0, thenP ∗ (R1, … , Rm) ≥ P ∗ (R′1, … ,

R′n)if and only ifcr (S) ≥ cr (S′)for all values of the reliability

parameterr ∈ (0, 1).

Our procedure in the general case, as expressed in (2.7), in conjunction with (2.9) entails our procedure in

the special case, as expressed in (2.1).

Rather than assessing directly whether the curves criss‐cross for the functions that measure the

proportional con�dence boost, we construct a di�erence function. Consider two information sets 

 and . We calculate the weight vectors  and 

. The di�erence function is de�ned as follows:

S = {R1, … , Rm} S′ = {R′1, … , R′n} < a0, … , am >

< a′0, … , a′n >

(2.10)

fr (S, S′) = cr (S) − cr (S′).
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 has the same sign for all values of  if and only if the measure  is always greater

than or is always smaller than the measure for all values of . Hence, we can restate the

general procedure in (2.7) that induces a quasi‐ordering over an unrestricted set of information sets in a

more parsimonious fashion:

fr (S, S′) r ∈ (0, 1) cr (S)

cr (S′) r ∈ (0, 1)

(2.11)

For two information sets S,S ′∈S, S⪰S′ ifffr (S,S′) ≥ 0for all

values ofr ∈ (0, 1).

If the information sets S and  are of equal size, then it is also possible to determine whether there exists a

coherence ordering over these sets directly from the weight vectors  and .

One need only evaluate the conditions under which the sign of the di�erence function is invariable for all

values of . In Appendix B.1, we have shown that

S′

< a0, … , an > < a′0, … , a′n >

r ∈ (0, 1)

(2.12)p. 37

a′i/ai ≥ max (1, a0/a0), ∀i = 1, … , n − 1

is a necessary and sufficient condition for S⪰S′

forn = 2and is a sufficient condition for S⪰S′ for

n > 2.

This is the more parsimonious statement of the condition. However, it is easier to interpret this condition

when stated as a disjunction:

(2.13)

(i)a′0 ≤ a0&a′i ≥ ai, ∀i = 1, … , n − 1, or,

(ii)a′0 ≥ a0&a′i/ai ≥ a′0/a0, ∀i = 1, … , n − 1,

is a necessary and sufficient condition forS ⪰ S′for

n = 2and is a sufficient condition forS ⪰ S′forn > 2.

It is easy to see that (2.12) and (2.13) are equivalent.1

Let us now interpret (2.13). For , let  and consider the diagram for the joint probability

distribution in Figure 2.1. There are precisely two ways to decrease  the coherence in moving from

information sets S to : First, by shrinking the overlapping area between  and  and

expanding the non‐overlapping area ; and second, by expanding the overlapping area 

while expanding the non‐overlapping area to a greater degree . The example of the corpse

in Tokyo in the next section is meant to show that these conditions are intuitively plausible.

n = 2 S = {R1, R2}
2

S′ R1 R2 (a′0 ≤ a0)

(a′1 ≥ a1) (a′0 ≥ a0)

(a′1/a1 ≥ a′0/a0)
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Fig. 2.1  A diagram for the probability distribution for information pairs

For , consider the diagram for the joint probability distribution in Figure 2.2. and let 

. There are two ways to decrease the coherence in moving from S to : First, by shrinking

the area in which there is complete overlap between  and expanding all the

areas in which there is no complete overlap ; and second, by expanding the

area in which there is complete overlap  and expanding all the non‐overlapping areas to a greater

degree . This is a su�cient but not a necessary condition for .

Hence, if equal‐sized information sets do not satisfy condition (2.13), we still need to apply our general

method in (2.11), i.e. we need to examine the sign of  for all values of . The example of

BonJour's challenge in the next section shows that it may be possible to order two information sets using

the general method in (2.11) without satisfying the su�cient condition in (2.13).

n > 2

S = {R1, R2, R3} S′

R1, … , Rn (a′0 ≤ a0)p. 38

(a′i ≥ ai, ∀i = 1, … , n − 1)

(a′0 ≥ a0)

(a′i/ai ≥ a′0/a0, ∀i = 1, … , n − 1) n > 2

fr (S, S′) r ∈ (0, 1)

p. 39

Fig. 2.2  A diagram for the probability distribution for information triples

If we wish to determine the relative coherence of two information sets S and  of unequal size, we have no

shortcut. In that case, we need to apply our general method in (2.11), i.e. we need to examine the sign of 

 for all values of . The example of Tweety in the next section will provide an illustration

of the procedure used to judge the relative coherence of information sets of unequal size.

S′

fr (S, S′) r ∈ (0, 1)

2.3. A CORPSE IN TOKYO, BONJOUR'S RAVENS AND TWEETY

Does our analysis yield the correct results for some intuitively clear cases? We consider a comparison (i) of

two information pairs, (ii) of two information triples, and (iii) of two information sets of unequal size.

(i) Information Pairs. Suppose that we are trying to locate a corpse from a murder somewhere in Tokyo. We

draw a grid of 100 squares over the map of the city and consider it equally probable that the corpse lies
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somewhere within each square. We interview two partially and equally reliable witnesses. Suppose witness 1

reports that the corpse is somewhere in squares 50 to 60 and witness 2 reports that the corpse is somewhere

in squares 51 to 61. Call this situation  and include this information in the information set . For this

information set,  and 

α Sα

aα
0 = .10 aα

1 = .02.

Let us now consider a di�erent situation in which the reports from the two sources overlap far less. In this

alternate situation—call it β—witness 1 reports squares 20 to 55 and witness 2 reports squares 55 to 90. This

information is contained in . The overlapping area shrinks to  and the non‐overlapping area

expands to . On condition (2.13)(i),  is less coherent than , since  and 

.

Sβ a
β
0 = .01

a
β
1 = .70 Sβ Sα a

β
0 = .01 ≤ a

α
0 = .10

a
β
1 = .70 ≥ a

α
1 = .02

In a third situation , witness 1 reports squares 20 to 61 and witness 2 reports squares 50 to 91.  contains

this information. The overlapping area expands to  and the non‐overlapping area expands to 

. On condition (2.13)(ii),  is less coherent than , since  and 

.

γ Sγ

aγ
0 = .12

a
γ
1 = .60 Sγ Sα a

γ
0 = .12 ≥ a

α
0 = .10

a
γ
1/a

α
1 = 30 ≥ 1.2 = a

γ
0/a

α
0

Now let us consider a pair of situations in which no ordering of the information sets is possible. We are

considering information pairs, i.e. , and so condition (2.12) and (2.13) provide equivalent necessary

and su�cient conditions to order two information pairs, if there exists an ordering. In situation δ, witness 1

reports squares 41 to 60 and witness 2 reports squares 51 to 70. So  and . In situation ɛ,

witness 1 reports squares 39 to 61 and witness 2 reports squares 50 to 72. So  and . Is the

information set in situation δ more or less coherent than in situation ɛ? It is more convenient here to invoke

condition (2.12). Notice that  is not greater than or equal to , nor is 

 greater than or equal to . Hence neither  nor  hold true.

p. 40

n = 2

a
δ
0 = .10 a

δ
1 = .20

a
ɛ
0 = .12 a

ɛ
1 = .22

a
ɛ
1/a

δ
1 = 1.10 1.20 = max(1, a

ɛ
0/a

δ
0)

a
δ
1/a

ɛ
1 ≈ .91 1 = max (1, a

δ
0/a

ɛ
0) Sδ

⪰ Sɛ Sɛ
⪰ Sδ

These quasi‐orderings over the information sets in situations α and β, in situations α and γ, and in situations

δ and ɛ seems to square quite well with our intuitive judgements. Without having done any empirical

research, we conjecture that most experimental subjects would indeed rank the information set in situation

α to be more coherent than the information sets in either situations β or γ. Furthermore, we also conjecture

that if one were to impose su�cient pressure on the subjects to judge which of the information sets in

situations δ and ɛ is more coherent, we would be left with a split vote.

We have reached these results by applying the special conditions in (2.12) and (2.13) for comparing

information sets. The same results can be obtained by using the general method in (2.11). Write down the

di�erence functions as follows for each comparison (i.e. let  and , let  and , and let 

 and  in turn):

i = α j = β i = α j = γ

i = δ j = ɛ

(2.14)

fr (Si, Sj) = cr (Si) − cr (Sj) =
ai

0+–a
i

0
–r

2

ai
0+ai

1
–r+ai

2
–r

2 −
a

j
0+–aj

0
–r

2

a
j
0+a

j
1
–r+a

j
2
–r

2 .

As we can see in Figure 2.3, the functions  and  are positive for all values of 

—so  is more coherent than  and . But  is positive for some values and negative for other

values of —so there is no coherence ordering over  and .

fr (Sα, Sβ) fr (Sα, Sγ) r ∈ (0, 1)

Sα Sβ Sγ
fr (Sδ, Sɛ)

r ∈ (0, 1) S δ S ɛ
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Fig. 2.3  The di�erence functions for a corpse in Tokyo

(ii) Information Triples. We return to BonJour's challenge. There is a more coherent set,  [All

ravens are black],  [This bird is a raven],  [This bird is black]}, and a less coherent set, 

 [This chair is brown],  [Electrons are negatively charged],     [Today is

Thursday]}. The challenge is to give an account of the fact that S is more coherent than . Let us apply our

analysis to this challenge.

S = {R1 =

R2 = R3 =

S′ = {R′1 = R′2=p. 41 R′3=

S′

What is essential in S is that , so that . But to construct a joint probability

distribution, we need to make some additional assumptions. Let us make assumptions that could plausibly

describe the degrees of con�dence of an amateur ornithologist who is sampling a population of birds: 

R1&R2 ⊢ R3 P (R3|R1, R2) = 1

p. 42

(i) There are four species of birds in the population of interest, ravens being one of them. There is an

equal chance of picking a bird from each species: .

(ii) The random variables  and , whose values are the propositions  and , and  and ,

respectively, are probabilistically independent: Learning no more than that a raven was (or was not)

picked teaches us nothing at all about whether all ravens are black.

(iii) We have prior knowledge that birds of the same species often have the same colour and black may be

an appropriate colour for a raven. Let us set .

(iv) There is a one in four chance that a black bird has been picked amongst the non‐ravens, whether all

ravens are black or not, i.e. . Since we know that birds

of a single species often share the same colour, there is only a chance of 1/10 that the bird that was

picked happens to be black, given that it is a raven and that it is not the case that all ravens are black,

i.e. .

P (R2) = 1/4

R1 R2 R1 ¬R1 R2 ¬R2

P (R1) = 1/4

P (R3|¬R1, ¬R2) = P (R3|R1, ¬R2) = 1/4

P (R3|¬R1, R2) = 1/10
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These assumptions permit us to construct the joint probability distribution for  and to specify

the weight vector  (see Figure 2.4).

R1, R2, R3

< a0, … , a3 > 3

Fig. 2.4  A diagram for the probability distribution for the set of dependent propositions in BonJour's ravens

p. 43 What is essential in information set  is that the propositional variables are probabilistically independent

—e.g. learning something about electrons presumably does not teach us anything about what day it is today

or about the colour of a chair. Let us suppose that the marginal probabilities of each proposition are 

. We construct the joint probability distribution for  and 

and specify the weight vector  in Figure 2.5.

S′

P (R′1) = P (R′2) = P (R′3) = 1/4 R′1, R′2, R′3

< a′0, … , a′3 > 4

Fig. 2.5  A diagram for the probability distribution for the set of independent propositions in BonJour's ravens

The information triples do not pass the su�cient condition for the determination of the direction of the

coherence ordering in (2.12).  So we need to appeal to our general method and construct the di�erence

function:

5

(2.15)

fravens = fr (S, S′) = a0+
–a0

–r
3

a0+a1
–r+a2

–r
2
+a3

–r
3 − a′0+–a′0

–r
3

a′0+a′1
–r+a′2

–r
2
+a′3

–r
3 .

We have plotted  in Figure 2.7. This function is positive for all values of . Hence we may

conclude that S is more coherent than , which is precisely the intuition of which BonJour wanted an

account.

fravens r ∈ (0, 1)

S′
6
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Fig. 2.7  The di�erence functions for BonJour's ravens and Tweety

 (iii) Information Sets of Unequal Size. Finally, we consider a comparison between an information pair and an

information triple. The following example is inspired by the paradigmatic example of non‐monotonic

reasoning about Tweety the penguin. We are not interested in non‐monotonic reasoning here, but merely in

the question of the coherence of information sets. Suppose that we come to learn from independent sources

that someone's pet Tweety is a bird (B) and that Tweety cannot �y, i.e. that Tweety is a ground‐dweller (G).

Considering what we know about pets, {B, G} is highly incoherent information. Aside from the occasional

penguin, there are no ground‐dwelling birds that qualify as pets, and aside from the occasional bat, there are

no �ying non‐birds that qualify as pets. Later, we receive the new item of information that Tweety is a

penguin (P). Our extended information set  seems to be much more coherent than 

. So let us see whether our analysis bears out this intuition. We construct a joint probability

distribution for B, G, and P together with the marginalized probability distributions for B and G in Figure 2.6.

p. 44

S′ = {B, G, P}

S = {B, G}

Fig. 2.6  A diagram for the probability distribution for Tweety before and a�er extension with [Tweety is a penguin]

Since the information sets are of unequal size, we need to appeal to our general method in (2.11) and

construct the di�erence function:

(2.16)

ftweety = fr (S′, S) = a′0+–a′0
–r

3

a′0+a′1
–r+a′2

–r
2
+a′3

–r
3 − a0+–a0

–r
2

a0+a1
–r+a2

–r
2 .

D
ow

nloaded from
 https://academ

ic.oup.com
/book/34761/chapter/297028283 by Vienna U

niversity Library user on 17 January 2025



We have plotted  in Figure 2.7. This function is positive for all values of  (0,1). We may conclude

that  is more coherent than S, which is precisely the intuition that we wanted to account for.

ftweety r ∈

S′

p. 45 2.4. EQUAL RELIABILITY

We have built into our model the assumption that the sources are equally reliable, i.e. that all sources have

the same true positive rate p and the same false positive rate q. This seems like an unreasonably strong

assumption, since, when we are gathering information in the actual world, we typically trust some

sources less and some sources more. But our assessment of the relative coherence of information sets has

nothing to do with how much we actually trust our information sources. As a matter of fact, we may assess

the coherence of an information set without having any clue whatsoever who the sources are of the items in

this information set or what their degrees of reliability are. An assessment of coherence requires a certain

metric that features hypothetical sources with certain idealized characteristics. These hypothetical sources

are not epistemically perfect, as is usually the case in idealizations. Rather, they are characterized by

idealized imperfections—their partial reliability. Furthermore, our idealized sources possess the same degree

of internal reliability and the same degree of external reliability. By internal reliability we mean that the

sources for each item within an information set are equally reliable, and by external reliability we mean that

the sources for each information set are equally reliable.

p. 46

To see why internal reliability is required in our model, consider the following two information sets. Set S

contains two equivalent propositions  and  and a third proposition  that is highly negatively

relevant with respect to  and . Set  contains three propositions , , and  and every two

propositions in  are just short of being equivalent. One can specify the contents of such information sets

such as to make  intuitively more coherent than S. Our formal analysis will agree with this intuition. Now

suppose that it turns out that the actual—i.e. the non‐idealized—information sources for , and 

 are quite reliable and for  and  are close to fully unreliable. We assign certain values to the

reliability parameters to re�ect this situation and calculate the proportional con�dence boosts that actually

result for both information sets. Plausible values can be picked for the relevant parameters so that the

proportional con�dence boost for S actually exceeds the proportional con�dence boost for . This comes

about because the actual information sources virtually bring nothing to the propositions  and  and

because  and  are indeed equivalent (and hence maximally coherent), whereas  and  are short of

being equivalent (and hence less than maximally coherent). But what we want is an assessment of the

relative coherence of  and  and not of the relative coherence of  and 

. The appeal to ideal agents with the same degree of internal reliability in our metric is warranted

by the fact that we want to compare the degree of coherence of complete information sets and not of

some proper subsets of them.

R1 R2 R3

R1 R2 S′ R′1 R′2 R′3

S′

S′

R1, R′1, R2

R′2 R3 R′3

S′

R3 R′3

R1 R2 R′1 R′2

{R1, R2, R3} {R′1, R′2, R′3} {R1, R2}

{R′1, R′2}

p. 47

Second, to see why external reliability is required in our model, consider some information set S which is not

maximally coherent, but clearly more coherent than an information set . Any of our examples in Section

2.3 will do for this purpose. It is always possible to pick two values r and  so that . To

obtain such a result, we need only pick a value of  in the neighbourhood of 0 or 1 and pick a less extreme

value for r, since it is clear from (2.6) that for  approaching 0 or 1,  approaches 1. This is why

coherence needs to be assessed relative to idealized sources that are taken to have the same degree of

external reliability.

S′

r′ cr′ (S′) > cr (S)

r′

r′ cr′ (S′)
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2.5. INDETERMINACY

Our analysis has some curious repercussions for the indeterminacy of comparative judgements of

coherence. Consider the much debated problem among Bayesians of how to set the prior probabilities. We

have chosen examples in which shared background knowledge (or ignorance) imposes constraints on what

prior joint probability distributions are reasonable.  In the case of the corpse in Tokyo, one could well

imagine coming to the table with no prior knowledge whatsoever about where an object is located in a grid

with equal‐sized squares. Then it seems reasonable to assume a uniform distribution over the squares in the

grid. In the case of BonJour's ravens we modelled a certain lack of ornithological knowledge and let the joint

probability distribution respect the logical entailment relation between the propositions in question. In

the case of Tweety one could make use of frequency information about some population of pets that

constitutes the appropriate reference class.

7

p. 48

But often we �nd ourselves in situations without such reasonable constraints. What are we to do then? For

instance, what is the probability that the butler was the murderer (B), given that the murder was committed

with a kitchen knife (K), that the butler was having an a�air with the victim's wife (A), and that the

murderer was wearing a butler jacket (J)? Certainly the prior joint probability distributions over the

propositional variables B, K, A, and J may reasonably vary widely for di�erent Bayesian agents and there is

little that we can point to in order to adjudicate in this matter. But to say that there is room for legitimate

disagreement among Bayesian agents is not to say that anything goes. Certainly we will want the joint

probability distributions to respect, among others things, the feature that .

Sometimes there are enough rational constraints on degrees of con�dence to warrant agreement in

comparative coherence judgements over information sets. And sometimes there are not. It is perfectly

possible for two rational agents to have degrees of con�dence that are so di�erent that they are unable to

reach agreement about comparative coherence judgements. This is one kind of indeterminacy. Rational

argument cannot always bring su�cient precision to degrees of con�dence to yield agreement on

judgements of coherence.

P (B|K, A, J) > P (B)

But what our analysis shows is that this is not the only kind of indeterminacy. Two rational agents may have

the same subjective joint probability distribution over the relevant propositional variables and still be

unable to make a comparative judgement about two information sets. This is so for situations δ and ɛ in the

case of the corpse in Tokyo. Although there is no question about what constitutes the proper joint

probability distributions that are associated with the information sets in question, no comparative

coherence judgement about  and  is possible. This is so because the proportional con�dence boost for 

exceeds the proportional con�dence boost for  for some intervals of the reliability parameter, and vice

versa for other intervals. If coherence is to be measured by the proportional con�dence boost and if it is to

be independent of the reliability of the witnesses, then there will not exist a coherence ordering for some

pairs of information sets.

Sδ Sɛ Sδ

Sɛ

In short, indeterminacy about coherence may come about because rationality does not su�ciently constrain

the relevant degrees of con�dence. In this case, it is our epistemic predicament with respect to the content

of the information set that is to blame. However, even when the probabilistic features of a pair of

information sets are fully transparent, it may still fail to be the case that one information set is more

coherent than (or equally coherent as) the other. Prima facie judgements can be made on both sides, but no

judgement tout court is warranted. In this case, indeterminacy is not due to our epistemic predicament, but

rather to the probabilistic features of the information sets.

p. 49
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2.6. ALTERNATIVE PROPOSALS

We return to the alternative proposals to construct a coherence ranking that were introduced in Chapter 1

and will show that these proposals yield counter‐intuitive results. First, Lewis does not propose a measure

that induces an ordering over information sets. Rather, he claims that coherent (or, in his words,

congruent) information sets have the following property

(2.17)

P (Ri|R1, … , Ri−1, Ri+1, … , Rn) > P (Ri) for all i = 1, … , n.

But let us suppose that an information set contains n pairs of equivalent propositions, but that there is a

relation of strong negative relevance (but not of inconsistency) between the propositions in each pair and all

other propositions. In other words, 

 but not equal to 0, for each

equivalent pair of propositions . Then one would be hard‐pressed to say that this information set is

coherent. And yet, according to Lewis, this information set is coherent, because, assuming non‐extreme

marginal probabilities,  for all    .

P (Ri, Rj) > P (Ri, Rj R1, … , Ri−1, Ri+1, … , Rj−1, Rj+1, … , R2n) ≈ 0∣ {Ri, Rj}

1 = P (Ri|R1, … , Ri−1, Ri+1, … , Rn) > P (Ri) i = 1, … , 2n
8

Second, Shogenji proposes that

(2.18)

S ⪰ S′iffms (S) =
P(R1,…, Rm)

∏n
i=1 P(Ri)

≥
P(R′1,…, R′n)

∏n
i=1 P(R′i)

= ms (S′).

The following example shows that the Shogenji measure is counter‐intuitive. Suppose that there are 1,000

equiprobable suspects for a crime with equal proportions of Africans, North Americans, South Americans,

Europeans, and Asians. Now consider the information sets  [The culprit is either an African, a

North American, a South American, or a European],  [The culprit is not Asian]} and  [The

culprit is an African],  [The culprit is either Youssou (a particular African), Sulla (a particular South

American), or Pierre (a particular European)]}. Since S contains propositions that pick out coextensive sets

of suspects, whereas there is relatively little overlap between the propositions in , it seems reasonable to

say that S is a more coherent set than . However, on the Shogenji measure, 

. Our procedure, on the other hand, clearly matches the

intuitive result in this case. The proportional con�dence boost measure  is maximal for the maximally

coherent information set S containing equivalent propositions. Hence, the di�erence function 

 for all values of  and so, by (2.11), S is more coherent than .

p. 50

S = {R
1

=

R2 = S′ = {R′1 =

R′2 =

S′

S′

ms (S) = .8
.8×.8

= 1.25 < 1.67 = .001
.2×.003

= ms (S′)

cr

fr (S, S′) = cr (S) − cr (S′) > 0 r ∈ (0, 1) S′

Third, Olsson tentatively proposes that

(2.19)

S ⪰ S′iff

mo (S) =
P(R1,…, Rm)

P(R1∨…∨Rm) ≥
P(R′1,…, R′n)

P(R′1∨…∨R′n) = mo (S′).

The Tweety example shows that this measure is counter‐intuitive. It seems reasonable to say that the

information pair S  {[My pet Tweety is a bird], [My pet Tweety cannot �y]} is less coherent than the=
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information triple    {[My pet Tweety is a bird], [My pet Tweety cannot �y], [My pet Tweety is a

penguin]}. But from Figure 2.6 we can read o� that .

S′ =

mo (S) = .01/.99 = mo (S′)

Fourth, we focus on Fitelson's measure as applied to information pairs. The Kemeny–Oppenheim measure

is a measure of factual support when the marginal probabilities of  and  are not extreme:R1 R2

(2.20)

F (R1, R2) =
P(R1|R2)−P(R1|¬R2)

P(R1|R2)+P(R1|¬R2)

forP (R1) < 1andP (R2) > 0.

Fitelson proposes thatp. 51

(2.21)

S ⪰ S′iff

mf (S) = F(R1,R2)+F(R2,R1)
2 ≥ F(R′1,R′2)+F(R′2,R′1)

2 = mf (S′).

The following example shows that this measure yields counter‐intuitive results. Let there be 100 suspects

for a crime who have an equal chance of being the culprit. In situation one, let there be 6 Trobriand suspects

and 6 chess‐playing suspects; there is 1 Trobriand chess player. In situation two, let there be 85 Ik suspects

and 85 rugby‐playing suspects; there are 80 Ik rugby players. Which information is more coherent—

 [The culprit is a Trobriand],  [The culprit is a chess player]} or  [The culprit is

an Ik],  [The culprit is a rugby player]}? The information in  seems to �t together much better than

in S, since there is so little overlap between being a Trobriander and being a chess player and there is

considerable overlap between being an Ik and a rugby player. But note that on Fitelson's measure 

. The Fitelson measure behaves curiously for cases in which we increase the

overlapping area, while keeping the non‐overlapping area �xed. Intuitively, one would think that when

keeping the non‐overlapping area �xed, then, the more overlap, the greater the coherence. And this is

indeed what our condition (2.12 indicates. But on the Fitelson measure, this is not the case. In Figure 2.8, we

set the non‐overlapping area at . We increase the overlapping area 

from .01 to .80 and plot the Fitelson measure as a function of  in Figure 2.9. The measure �rst increases

from  and then reaches its maximum for  and subsequently decreases again. We fail to see

any intuitive justi�cation for this behaviour of the measure.

S = {R1 = R2 = S′ = {R′1 =

R′2 = S′

mf (S) ≈ .52 > .48 ≈ mf (S′)

P (R1, ¬R2) = P (¬R1, R2) = .05 a0

a0

a0 = .01 a0 ≈ .17

Fig. 2.8  A diagram for the probability distributions of the information sets in our counter‐example to the Fitelson measure
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Fig. 2.9  The Fitelson measure  as a function of  for the information sets in our counter‐example to the

Fitelson measure

mf a0 ∈ [.01, .8]

Where do these proposals go wrong? Lewis forgets that strong positive relevance between each proposition

in a singleton set and the propositions in the complementary set is compatible with strong negative

relevance between certain propositions in the information set. On Shogenji's measure, information sets

containing less probable propositions tend to do better on the coherence score, so much so that information

sets with non‐equivalent but less probable propositions may  score higher than information sets

containing all and only equivalent propositions. We concur with Fitelson (2003) that an information set

with all and only equivalent propositions is maximally coherent. It is not possible for non‐equivalent

propositions to �t together better than equivalent propositions. Certainly, information sets with less

probable propositions may be more informative—it is more informative when a suspect points to Sulla than

when she points to the whole group of South Americans. Furthermore, informativeness is a good‐making

characteristic of witness reports, as is coherence. But this is no reason to think that informativeness should

be an aspect of coherence. Olsson pays exclusive attention to the relative overlap between the propositions

in the information set. But note that by increasing the number of propositions one can increase relations of

positive relevance while keeping the relative overlap �xed. Fitelson's measure assesses the degree of

positive relevance between the propositions in the information set. But sometimes the relative overlap

between the propositions gets the upper hand in our intuitive judgement of coherence.

p. 52

p. 53

We believe that judgements of coherence rest on the subtle interplay between the degree of positive

relevance relations and relative overlap relations between propositions. To determine the nature of this

subtle interplay, it is of no use to consult our intuitions. Rather, one needs to determine the relative

coherence through the role that coherence is meant to play—the role of boosting our con�dence in the

propositions in question. More coherent information sets are information sets that display higher

proportional coherence boosts regardless of the degree of reliability of the sources.

2.7. THEORY CHOICE IN SCIENCE

Where does our analysis leave the claim in philosophy of science that coherence plays a role in theory

choice? We repeat the equality in (2.8):

(2.22)

P ∗ (R1, … , Rn) =
a0

a0+–a0
–rn × cr ({R1, … , Rn}).
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What this means is that our degree of con�dence in an information set S can be expressed in terms of the

measure  which induces a quasi‐ordering weighted by a factor. Note that this factor approximates 1 for

larger information sets (large n) as well as for highly reliable sources ( ). Let us assume that we are

comparing two information sets that can be ordered. Then the relative degree of con�dence for these two

information sets is fully determined by their relative coherence, if either the sources are su�ciently reliable

or the information sets are su�ciently large.

cr (S)

r ≈ 1

One can represent a scienti�c theory T by a set of propositions . Let the  be assumptions,

scienti�c laws, speci�cations of parameters, and so on. It is not plausible to claim that each proposition is

independently tested, i.e. that each  shields o� the evidence  for this proposition from all other

propositions in the theory and all other evidence. The constitutive propositions of a theory are tested in

unison. They are arranged into models that combine various propositions in the theory. Di�erent models

typically share some of their contents, i.e. some propositions in T may play a role in multiple models. It is

more plausible to claim that each model  is being supported by some set of evidence  and that each 

shields o� the evidence  in support of the model from the other models in the theory and from other

evidence. This is what it means for the models to be supported by independent evidence. There are complex

probabilistic relations between the various models in the theory.

p. 54 {T1, … , Tm} Tis

Ti Ei

Mi Ei Mi

Ei

Formally, let each  for  combine the relevant propositions of a theory T that are necessary to

account for the independent evidence . A theory T can be represented as the union of these .  Let 

be the variable which ranges over the value  stating that all propositions in the model are true and the

value  stating that at least one proposition in the model is false. In Bayesian con�rmation theory,  is

evidence for  if and only if the likelihood ratio

Mi i = 1, … , n

Ei Mis
9

Mi

Mi

¬Mi Ei

Mi

(2.23)

xi =
P(Ei|¬Mi)

P(Ei|Mi)

is contained in (0,1). Hence,  stands to  in the same way as  stands to  in our framework. Let

us suppose that all the likelihood ratios  equal x.  now plays the same role as r in our earlier

model. We can construct a probability measure P for the constituent models of a theory T and identify the

weight vector . If we translate the constraints of our earlier model, the following result

holds up:

Ei Mi REPRi Ri

xi x := 1 − x–

< a0, … , an >

(2.24)p. 55

P ∗ (M1, … , Mn) = a0

a0+–a0xn × cx ({M1, … , Mn}).–

Suppose that we are faced with two contending theories. The models within each theory are supported by

independent items of evidence. It follows from (2.24) that, if (i) the evidence for each model is equally

strong, as expressed by a single parameter x, and, (ii) either the evidence for each model is relatively strong

( ), or, each theory can be represented by a su�ciently large set of models (large n), then a higher

degree of con�dence is warranted for the theory that is represented by the more coherent set of models. Of

course, we should not forget the caveat that indeterminacy springs from two sources. First, there may be

substantial disagreement about the prior joint probability distribution over the variables , and

second, even in the absence of such disagreement, no comparative coherence judgement may be possible

between both theories, represented by their respective constitutive models. But even in the face of our

assumptions and the caveats concerning indeterminacy, this is certainly not a trivial result about the role of

coherence in theory choice within the framework of Bayesian con�rmation theory.

x ≈ 0

M1, … , Mn
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Notes

1 Assume (2.12). Either  or . In the former case, it follows from the
inequality in (2.12) that  and . In the latter case, it follows from the inequality in
(2.12) that  and . Hence, (2.13) follows. Assume (2.13). Suppose (i) holds.
From the first conjoint in (i),  and hence from the second conjoint in (i), 

. Suppose (ii) holds. From the first conjoint in (ii), 
 and hence from the second conjoint in (ii), .

Hence, (2.12) follows.

max (1, a′0/a0) = 1 max (1, a′0/a0) = a′0/a0

a′0 ≤ a0 a′i ≥ ai, ∀i = 1, … , n − 1

a′0 ≥ a0 a′i/ai ≥ a′0/a0, ∀i = 1, … , n − 1

max (1, a′0/a0) = 1

a′i/ai ≥ max (1, a′0/a0), ∀i = 1, … , n − 1

max (1, a′0/a0) = a′0/a0 a′i/ai ≥ max (1, a′0/a0), ∀i = 1, … , n − 1

2 We introduce the convention that ʻdecreasingʼ stands for decreasing or not changing, ʻshrinkingʼ for shrinking or not
changing, and ʻexpandingʼ for expanding or not changing. This convention permits us to state the conditions in (2.13) more
clearly and is analogous to the microeconomic convention to let ʻpreferringʼ stand for weak preference, i.e. for preferring
to or being indi�erent between in ordinary language.

3 Since  and  are probabilistically independent,  for all values of 
 and . The numerical values in Figure 2.4 can be directly calculated.

R1 R2 P (R1, R2, R3) = P (R1)P (R2)P (R3|R1, R2)

R1, R2, R3

4 Since , and  are probabilistically independent,  for all values of
 and . The numerical values in Figure 2.5 can be directly calculated.

R′1, R′2 R′3 P (R′1, R′2, R′3) = P (R′1)P (R′2)P (R′3)

R′1, R′2, R′2

5 Clearly the condition fails for , but it also fails for , since 
.

S′ ⪰ S S ⪰ S′

a′2/a2 ≈ .94 < 1 = max (1, .25) = max (1, a′0/a0)

6 It is not always the case that an information triple in which one of the propositions is entailed by the two other
propositions is more coherent than an information triple in which the propositions are probabilistically independent. For
instance, suppose that  and  are extremely incoherent propositions, i.e. the truth of  makes  extremely
implausible and vice versa, and that  is an extremely implausible proposition which in conjunction with  entails .
Then it can be shown that this set of propositions is not a more coherent set than a set of probabilistically independent
propositions. This is not unwelcome, since entailments by themselves should not warrant coherence. Certainly, 

 should not be a coherent set when  and  are inconsistent and  contradicts our background
knowledge, although . A judgement to the e�ect that S is more coherent than  depends both on logical
relationships and background knowledge.

R2 R3 R2 R3

R1 R2 R3

{R1, R2, R3} R2 R3 R1

R1&R2 ⊢ R3 S′

7 Note that this is no more than a framework of presentation. Our approach is actually neutral when it comes to
interpretations of probability. Following Gillies (2000), we favour a pluralistic view of interpretations of probability. The
notion used in a certain context depends on the application in question. But, if one believes, as a more zealous
personalist, that only the Kolmogorov axioms and Bayesian updating impose constraints on what constitute reasonable
degrees of confidence, then there will be less room for rational argument and intersubjective agreement about the
relative coherence of information sets. Or, if one believes, as an objectivist, that joint probability distributions can only be
meaningful when there is the requisite objective ground, then there will be less occasion for comparative coherence
judgements. None of this a�ects our project. The methodology for the assessment of the coherence of information sets
remains the same, no matter what interpretation of probability one embraces.

8 For an example, see Bovens and Olsson (2000: 688–9).
9 This account of what a scientific theory is contains elements of both the syntactic view and the semantic view. Scientific

theories are characterized by the set of their models, as on the semantic view, and these models (as well as the evidence
for the models) are expressed as sets of propositions, as on the syntactic view.
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