
algorithmische Pseudocode-Routine ableiten.
Beides ist streng am Minimal-Resonator orientiert, ohne Semantik, Ontologie oder externe
Annahmen.

I. Algorithmische Pseudocode-Routine

Minimal-Resonator mit Bruchdetektion

Ziel

Automatische Prüfung eines Quellenensembles auf:

• Resonanz

• Stabilität

• strukturelle Brüche

• resultierende Trägheit

1. Datenstrukturen
Source s_i:
 phi_i // ordinale Phase
 R_i // Menge relationaler Anforderungen
 sigma_i // stabile innere Komponente (opaque, nicht benutzt)

Input:
 S = {s_1, s_2, ..., s_n}
 epsilon // Toleranz für Phasennähe

Output:
 ResonanceCluster : Boolean
 Stability : Boolean
 Breaks : Set of (i, j)
 Inertia : {high, low}

2. Hilfsfunktionen

Phasendistanz
PhaseDistance(phi_i, phi_j):
 return ordinal_distance(phi_i, phi_j)

Kommentar:
ordinal_distance ist keine numerische Metrik,
sondern eine Ordnungsrelation („nah“ vs. „fern“).

1 / 3

Verträglichkeitsprüfung
Compatible(R_i, R_j):
 if exists configuration satisfying (R_i R_j):∪
 return true
 else:
 return false

Kommentar:
Keine Interpretation der Anforderungen,
nur Prüfung auf gleichzeitige Erfüllbarkeit.

3. Schritt 1: Resonanzprüfung (Definition 1)
CheckResonance(S, epsilon):
 for each pair (i, j) in S:
 if PhaseDistance(phi_i, phi_j) >= epsilon:
 return false
 return true

4. Schritt 2: Stabilitätstest (Definition 2)
CheckStability(S, epsilon):
 for each source s_k in S:
 S_prime = small_perturbation(S, s_k)
 if not CheckResonance(S_prime, epsilon):
 return false
 return true

Kommentar:
small_perturbation verändert Form, nicht Rolle
(z. B. Kürzung, Umformulierung, Detailverlust).

5. Schritt 3: Verträglichkeitsmatrix κ
ComputeCompatibilityMatrix(S):
 for each pair (i, j) in S:
 if Compatible(R_i, R_j):
 kappa[i][j] = 1
 else:
 kappa[i][j] = 0
 return kappa

2 / 3

6. Schritt 4: Bruchdetektion (Definition 3)
DetectBreaks(S, epsilon, kappa):
 Breaks = empty set
 for each pair (i, j) in S:
 if PhaseDistance(phi_i, phi_j) < epsilon
 and kappa[i][j] == 0:
 add (i, j) to Breaks
 return Breaks

7. Gesamtalgorithmus
MinimalResonator(S, epsilon):

 ResonanceCluster = CheckResonance(S, epsilon)

 if ResonanceCluster == false:
 return {
 ResonanceCluster: false,
 Stability: false,
 Breaks: all,
 Inertia: low
 }

 Stability = CheckStability(S, epsilon)

 kappa = ComputeCompatibilityMatrix(S)

 Breaks = DetectBreaks(S, epsilon, kappa)

 if Stability == true and Breaks is empty:
 Inertia = high
 else:
 Inertia = low

 return {
 ResonanceCluster: true,
 Stability: Stability,
 Breaks: Breaks,
 Inertia: Inertia
 }

8. Algorithmische Kernaussage
Resonanz ≠ Tragfähigkeit
Tragfähigkeit = Resonanz Stabilität (keine Brüche)∧ ∧

3 / 3

	algorithmische Pseudocode-Routine ableiten.
	I. Algorithmische Pseudocode-Routine
	Minimal-Resonator mit Bruchdetektion
	Ziel

	1. Datenstrukturen
	2. Hilfsfunktionen
	Phasendistanz
	Verträglichkeitsprüfung

	3. Schritt 1: Resonanzprüfung (Definition 1)
	4. Schritt 2: Stabilitätstest (Definition 2)
	5. Schritt 3: Verträglichkeitsmatrix κ
	6. Schritt 4: Bruchdetektion (Definition 3)
	7. Gesamtalgorithmus
	8. Algorithmische Kernaussage

