algorithmische Pseudocode-Routine ableiten.
Beides ist streng am Minimal-Resonator orientiert, ohne Semantik, Ontologie oder externe
Annahmen.

I. Algorithmische Pseudocode-Routine

Minimal-Resonator mit Bruchdetektion
Ziel
Automatische Priifung eines Quellenensembles auf:

* Resonanz

 Stabilitat

* strukturelle Briiche

* resultierende Tragheit

1. Datenstrukturen

Source s_1i:

phi_i // ordinale Phase

R_i // Menge relationaler Anforderungen

sigma_i // stabile innere Komponente (opaque, nicht benutzt)
Input:

S={s1, s_ 2, ..., s_n}

epsilon // Toleranz fur Phasenndhe
Output:

ResonanceCluster : Boolean

Stability : Boolean

Breaks : Set of (i, j)

Inertia : {high, low}

2. Hilfsfunktionen

Phasendistanz

PhaseDistance(phi_i, phi_j):
return ordinal_distance(phi_i, phi_j)

Kommentar:
ordinal_distance ist keine numerische Metrik,

sondern eine Ordnungsrelation (,,nah“ vs. ,,fern).

1/3



Vertraglichkeitspriifung
Compatible(R_i, R_j):
if exists configuration satisfying (R_i U R_j):
return true

else:
return false

Kommentar:
Keine Interpretation der Anforderungen,
nur Priifung auf gleichzeitige Erfiillbarkeit.

3. Schritt 1: Resonanzpriifung (Definition 1)

CheckResonance(S, epsilon):
for each pair (i, j) in S:
if PhaseDistance(phi_i, phi_j) >= epsilon:
return false
return true

4. Schritt 2: Stabilitatstest (Definition 2)

CheckStability(S, epsilon):
for each source s_k in S:
S_prime = small_perturbation(S, s_k)
if not CheckResonance(S_prime, epsilon):
return false
return true

Kommentar:
small_perturbation verdndert Form, nicht Rolle
(z. B. Kiirzung, Umformulierung, Detailverlust).

5. Schritt 3: Vertraglichkeitsmatrix k

ComputeCompatibilityMatrix(S):
for each pair (i, j) in S:
if Compatible(R_i, R_j):
kappa[i][]j] = 1
else:
kappa[1i][]j] = ©
return kappa

2/3



6. Schritt 4: Bruchdetektion (Definition 3)

DetectBreaks(S, epsilon, kappa):
Breaks = empty set
for each pair (i, j) in S:
if PhaseDistance(phi_i, phi_j) < epsilon
and kappa[i][j] == 0:
add (i, j) to Breaks
return Breaks

7. Gesamtalgorithmus

MinimalResonator (S, epsilon):
ResonanceCluster = CheckResonance(S, epsilon)

if ResonanceCluster == false:
return {
ResonanceCluster: false,
Stability: false,
Breaks: all,
Inertia: low

}
Stability = CheckStability(S, epsilon)
kappa = ComputeCompatibilityMatrix(S)
Breaks = DetectBreaks(S, epsilon, kappa)

if Stability == true and Breaks 1is empty:
Inertia = high

else:
Inertia = low

return {
ResonanceCluster: true,
Stability: Stability,
Breaks: Breaks,
Inertia: Inertia

8. Algorithmische Kernaussage

Resonanz # Tragfahigkeit
Tragfahigkeit = Resonanz A Stabilitat A (keine Brilche)

3/3



	algorithmische Pseudocode-Routine ableiten.
	I. Algorithmische Pseudocode-Routine
	Minimal-Resonator mit Bruchdetektion
	Ziel

	1. Datenstrukturen
	2. Hilfsfunktionen
	Phasendistanz
	Verträglichkeitsprüfung

	3. Schritt 1: Resonanzprüfung (Definition 1)
	4. Schritt 2: Stabilitätstest (Definition 2)
	5. Schritt 3: Verträglichkeitsmatrix κ
	6. Schritt 4: Bruchdetektion (Definition 3)
	7. Gesamtalgorithmus
	8. Algorithmische Kernaussage


