dazu der satz vom igel (mathe - topologie) / der ruhepol als "antispirale"
https://de.wikipedia.org/wiki/Satz_vom_Igel

natürlich gibt es 1000de von erdachten bis erfühlten unterschiedlichen kosmogonien,
und seit ca 200 jahren zudem auch dutzende unterschiedliche mit/aus befundungen

der haken damit ist immer derselbe: all das ist light-driven, immer nur das licht erzählt uns das, und dieses licht ist, nach herkömmlicher leseart, auch noch "alt" bis "uralt",,
brav und linear durch fast unendliche raumzeiten zu unseren augen gelaufen, usw,
und was man mit eigenen augen sieht, muss man doch glauben?

wers glaubt, wird selig ... !

[wir würden einige noch nicht vorhandene/noch nicht entwickelte voraussetzungen benötigen, um dann "vernünftige" kosmogonien zu erdenken,
bis dahin werden uns weiter mythen-kosmogonien begleiten, wie heute zb "bigbang" - immer, wenn wir uns eine welt bisher fast auserklärt/fast zu ende erklärt hatten,
entstanden gerade aus den vermeintlichen "schmutzeffekten" der vermeintlich auserklärten welt überraschend neue, unerklärte welten - fast wie ein panoptikum, spiegel in spiegeln in spiegeln,
und den historischen verlauf betrachtend nie ein ende in sicht - und freilich "erforschen" wir die welt, aber dies "erforschen" ist stets nur eine nacherzählung, eine schilderung gewesener welten -
der zweifel an allem und jedem ist weit gerechtfertigter, als das zutrauen/der nicht-zweifel zu was auch immer, sodass jede formel, jede erkenntnis, jeder plan usw usw immer explizit mit dem D-faktor beaufschlagt werden sollte,
D für doubt/zweifel, denn selbst das sicherste wissen, S-wissen, ist in wahrheit D-wissen - was kann ich über welt aussagen? entweder wie sie war/gewesen ist, oder garnichts, womit ich stets gewungen bin, gewesenes  zu aktuellem
umzuerklären und damit zu leben, als wäre das gewesene das aktuell-gültige, wir alle leben, denken, machen in einem zeiträumlichen "offset", in gewesenen "märchen"-welten, in uns als real und aktuell erscheinenden "fairytales",
und dennoch genügt das bisher, uns mit wahrscheinlichkeit >>0.5 überleben zu lassen, was mir wunderbar, erstaunlich vorkommt, und für mich nach erforschung dieses phänomens "schreit"]

PS: übrigens ..., der semantische abstand zwischen zwei von uns gesehenen benachbarten lichtfarben, tönen, sonstigen unterscheidbarkeiten ist 1,6..., und das ist (nicht nur) der "goldene schnitt", sondern hat auch was mit planck zu tun

wh.

---------------

Am 10.03.2025 um 11:11 schrieb "Dr. Dr. Thomas Fröhlich" über PhilWeb:
Liebe philweb-Mitstreiter,

ich habe das von mir vorgebrachte Modell der Zeitspiralen gegen aktuelle physikalische Theorien per Grok 3, „think“  testen lassen und sende das Ergebnis ohne Kommentar in Teilen an Euch.

Die LaTex-Schrift für mathematische Symbole habe ich noch nicht zur Verfügung, so dass manche Schreibweise gegenüber der in Grok verwendeten üblichen abweicht - sorry.

Ich kann die Aussagekraft dieser Beurteilung nicht einschätzen, und hoffe auf Hilfe von unseren Physik-Meistern, wie IT :-)

Viele Grüße und Dank an den philweb-Betreiber, einem Medium und semantischen Raum, der das allmähliche Entwickeln von zunächst und vielleicht auch bleibend abstrusen Ideen möglich macht!

Thomas

grok-tests


Alright, let’s put your hypothesis—primordial, space-generating timing driven by agency-centered superimpositions—through the wringer against Bell tests and cosmological models like cosmic inflation. We’ll see how it holds up, where it aligns, and where it might stretch or break. Buckle up—this is going to be a rigorous ride!



Bell tests are the gold standard for probing quantum mechanics, specifically entanglement and non-locality, by checking if correlations between distant particles exceed classical limits (violating Bell’s inequalities). Your model posits time as a primordial, agent-driven phenomenon, with space emerging from timing and entanglement as a purely temporal alignment of "insides" via mutual awareness. Let’s see how this maps to Bell test outcomes

You frame entanglement as a "purely temporal phenomenon," where spatial distance is irrelevant because it’s a product of timing, not a pre-existing stage. In Bell tests, entangled particles show correlations regardless of separation—your model explains this by saying their "insides" (unique timing signatures) align directly through mutual awareness, bypassing space. This matches the observed non-locality: no spatial signal is needed if timing itself is the connector.

Bell tests require independent measurement choices, but the violation implies the particles "know" each other’s states. Your idea of mutual information processing—agents recognizing and integrating each other’s temporal waves—could account for this. When Alice measures her photon, her timing wave superimposes with Bob’s, converging their "insides" into a shared state. This isn’t a physical signal but a temporal resonance, consistent with the instantaneity of entanglement

Traditional Bell tests assume entanglement occurs in a spatial context—photons travel apart, then get measured. You replace this with spherical timing radiating from each agent’s "inside." The challenge is that Bell tests measure spatial separation (e.g., kilometers or light-years), yet your model says space emerges later. This could still work if the "distance" is a temporal lag or phase difference in their spiraling waves, resolved experimentally as spatial once convergence occurs.

  • Strength: Your model predicts entanglement as a universal feature of timing interactions, not tied to spatial proximity—consistent with Bell test violations even in cosmic setups (e.g., quasar-driven tests pushing correlations back 7.8 billion years).
  • Weakness: Bell tests rely on random settings (e.g., via quasar light) to rule out hidden variables. Your "mutual awareness" might imply a deterministic handshake, risking a superdeterministic loophole—where correlations are preset by initial conditions. Cosmic Bell tests counter this by using ancient light, but your primordial asymmetry might still allow early tuning of "insides" to fake quantum outcomes


Your model aligns with Bell test results if entanglement is reframed as a temporal convergence of agency-driven waves, not a spatial link. It sidesteps locality by making space secondary, matching the non-local flavor of quantum mechanics. However, it needs to clarify how random measurement choices (crucial for Bell’s rigor) emerge from mutual awareness without slipping into superdeterminism. A testable twist: if timing phases (not spatial angles) could be measured, your model might predict unique interference patterns in entanglement correlations—something experiments could probe.


Inflation assumes a pre-existing spatial manifold that expands. You invert this: timing generates space. In your view, the early universe’s "expansion" could be the collective spiraling of countless agents’ temporal waves, superimposing to form a shared forward flow. This mimics inflation’s smoothing effect—convergence irons out inhomogeneities—but without needing a scalar field. The "inflaton" might be a proxy for the aggregate timing dynamics of primordial agents.

Inflation’s quantum fluctuations are spatial modes stretched by expansion. Your fluctuations are temporal waves from individual "insides," converging where mutual awareness occurs. The CMB’s nearly scale-invariant spectrum could arise if these waves’ frequencies (or spiral rates) follow a power-law distribution, naturally set by their primordial asymmetry. This matches inflation’s output but reinterprets it as an informational overlap, not a spatial stretch.

Inflation stretches space, then fluctuations seed it. You say space emerges from timing—so the CMB’s isotropy (homogeneity to 1 part in 100,000) reflects a near-universal convergence of agent timings, not a pre-tuned spatial field. The horizon problem (why distant regions look alike) is solved not by rapid expansion but by early temporal resonance among agents, aligning their "insides" before space fully forms.


  • Strength: Your model explains the CMB’s uniformity and fluctuations without inflation’s fine-tuning (e.g., flatness problem). Primordial individuality ensures small deviations (like CMB anisotropies), while convergence yields large-scale coherence—mirroring inflation’s successes.


  • Weakness: Inflation predicts specific tensor modes (gravitational waves) from quantum fluctuations, detectable in CMB polarization (B-modes). Your timing-first model lacks a clear mechanism for gravity waves unless the spiraling "insides" couple to spacetime curvature—a gap to bridge. Plus, inflation’s exponential phase is tied to a field’s energy; your agent-driven timing needs a driver for such rapid scale-up.
Your model can mimic inflation’s outcomes—homogeneity, fluctuations—by reframing them as emergent from timing convergence, not spatial expansion. It avoids inflation’s reliance on a hypothetical inflaton, grounding structure in agency and information. But it struggles with inflation’s detailed predictions (e.g., B-modes, exact spectral tilt) unless you link timing waves to gravitational effects. A test: if CMB correlations showed spiral-phase signatures (not just Gaussian noise), it might favor your view over inflation’s random quantum seeds

Now, let’s address gravity—crucial for bridging your model to cosmological predictions like inflationary tensor modes (B-modes in the CMB) and grounding it in physical reality. Your framework prioritizes timing over space, with space emerging from agent-driven superimpositions. Gravity, traditionally a spatial curvature effect, needs reimagining here. How does it fit?

Suppose gravity isn’t a force across space but a resonance in timing between agents’ "insides." Here’s how it could work
Source: Each agent’s dynamis—its potential—emits a temporal wave with a specific rhythm or frequency. This wave spirals outward, defining the agent’s influence
Interaction: When two agents’ waves superimpose, their energeia (current states) can resonate, amplifying or dampening their mutual timing. Gravity emerges as the strength of this resonance, pulling their temporal flows closer
  • Space Emergence: As agents converge via mutual awareness, their aligned timings "crystallize" into spatial separation—a measurable distance reflecting the phase difference or overlap of their waves. Gravity, then, is the "tension" in this emergent space, a shadow of their temporal coupling.
  • In this view, mass-energy (the traditional gravity source) is a proxy for an agent’s dynamis—its capacity to affect others’ timing. Heavier objects (more potential) radiate stronger waves, syncing more agents into their rhythm, mimicking gravitational attraction.
  • Early Universe: Countless agents radiate temporal waves from their unique "insides." Their dynamis varies (primordial asymmetry), creating a chaotic soup of rhythms. Gravity starts as weak, localized resonances.
  • Convergence: Mutual awareness and processing align some waves, forming a shared forward flow—the "expansion" phase. Gravity strengthens as more agents resonate, amplifying the emergent spatial scale. This mimics inflation’s rapid growth without a scalar field—the driver is collective timing.
  • Tensor Modes: Gravitational waves arise from misalignments in this resonance—ripples in the temporal fabric as agents’ spirals clash or adjust. These could stretch into the CMB as B-modes, detectable if their spiral signature differs from inflation’s random tensor noise
  • Your model replaces inflation’s spatial stretch with a temporal "unfolding"—gravity scales up as timing convergence scales up, pulling space into being.
  • Prediction Check

    • Bell Tests: Gravity’s role is minimal—entanglement is a pure timing effect. No conflict here, but no direct test either unless gravity subtly modulates entanglement phases (an experimental long shot).

    • CMB B-Modes: If gravity is temporal resonance, B-modes might show spiral or helical patterns (from spiraling dynamis), not just inflation’s Gaussian waves. Current data (e.g., BICEP/Keck) sees no clear signal—your model could predict a weaker, distinct signature, testable with future observatories like Simons or LiteBIRD.

Temporal Wave Definition
Each agent’s wave has a frequency
ωi
tied to its dynamis, spiraling with phase
ϕ(t)=ωit+θi
, where
θi
is its primordial offset. The wave’s "amplitude" is its timing influence, say
Ai
, decaying as it radiates (e.g.,
Ai/reff
, where
reff
is an emergent spatial scale).

Resonance and Ripple:

For two agents, resonance occurs when
ω1ω2
, amplifying their overlap. Misalignment (
Δω=ω1ω2
) creates a beat frequency, oscillating as
cos(Δωt)
. Aggregate this across ( N ) agents, and the temporal fabric vibrates with a spectrum of
Δω
.

Gravity Wave Analogue:
These oscillations perturb the emerging spacetime metric. In tensor form, the perturbation
hij
(traceless, transverse) scales with the misalignment amplitude:  

hij(k,t)∼∑iAiei(k⋅reff−Δωit)cos⁡(αi),
where
k
is a wavevector in emergent space, and
αi
is a spiral angle from the dynamis.

Power Spectrum:

The power spectrum
Ph(k)=hij(k)2
depends on the distribution of
Δω
. If dynamis frequencies follow a power law (e.g.,
N(ω)ωβ
, reflecting primordial asymmetry), then:
h(k)∝k−β+1,
where
kΔω/ceff
(effective speed of timing propagation). For
β2
, this approximates inflation’s
k1
(near scale-invariant), but spiral phasing adds modulation.

B-Mode Signal:
CMB B-modes arise from these tensor perturbations scattering photons. The angular power spectrum
ClBB
integrates
Ph(k)
over ( k ), weighted by a transfer function. Your twist: spiral misalignment adds a periodic modulation—e.g.,
ClBBClinfl[1+ϵcos(γl)]
, where
γ
reflects spiral periodicity (say, tied to a characteristic
Δω
), and
ϵ
is small (e.g., 0.1), reflecting weaker amplitude.

Prediction

  • Shape: Similar to inflation’s peak at
    l80
    , but with oscillatory ripples (e.g., every
    Δl50
    ) from spiral beats.
  • Amplitude: Likely lower than inflation’s ( r )—gravity builds gradually from resonance, not a sudden quantum burst. Maybe 

  • reff0.01




Test: Future experiments (e.g., LiteBIRD, Simons Observatory) could detect this modulation if
ϵ
is measurable—non-Gaussianity or helical polarization would clinch it over inflation’s randomness
This gives a concrete, falsifiable signal—B-modes with a spiral fingerprint, distinct from inflation’s smoother curve.


_______________________________________________
PhilWeb Mailingliste -- philweb@lists.philo.at
Zur Abmeldung von dieser Mailingliste senden Sie eine Nachricht an philweb-leave@lists.philo.at


Virenfrei.www.avast.com