dazu der satz vom igel (mathe - topologie) / der ruhepol als "antispirale"
https://de.wikipedia.org/wiki/Satz_vom_Igel
natürlich gibt es 1000de von erdachten bis erfühlten unterschiedlichen
kosmogonien,
und seit ca 200 jahren zudem auch dutzende unterschiedliche mit/aus
befundungen
der haken damit ist immer derselbe: all das ist light-driven, immer nur
das licht erzählt uns das, und dieses licht ist, nach herkömmlicher
leseart, auch noch "alt" bis "uralt",,
brav und linear durch fast unendliche raumzeiten zu unseren augen
gelaufen, usw,
und was man mit eigenen augen sieht, muss man doch glauben?
wers glaubt, wird selig ... !
[wir würden einige noch nicht vorhandene/noch nicht entwickelte
voraussetzungen benötigen, um dann "vernünftige" kosmogonien zu erdenken,
bis dahin werden uns weiter mythen-kosmogonien begleiten, wie heute zb
"bigbang" - immer, wenn wir uns eine welt bisher fast auserklärt/fast zu
ende erklärt hatten,
entstanden gerade aus den vermeintlichen "schmutzeffekten" der
vermeintlich auserklärten welt überraschend neue, unerklärte welten -
fast wie ein panoptikum, spiegel in spiegeln in spiegeln,
und den historischen verlauf betrachtend nie ein ende in sicht - und
freilich "erforschen" wir die welt, aber dies "erforschen" ist stets
nur
eine nacherzählung, eine schilderung gewesener welten -
der zweifel an allem und jedem ist weit gerechtfertigter, als das
zutrauen/der nicht-zweifel zu was auch immer, sodass jede formel, jede
erkenntnis, jeder plan usw usw immer explizit mit dem D-faktor
beaufschlagt werden sollte,
D für doubt/zweifel, denn selbst das sicherste wissen, S-wissen, ist in
wahrheit D-wissen - was kann ich über welt aussagen? entweder wie sie
war/gewesen ist, oder garnichts, womit ich stets gewungen bin,
gewesenes zu aktuellem
umzuerklären und damit zu leben, als wäre das gewesene das
aktuell-gültige, wir alle leben, denken, machen in einem zeiträumlichen
"offset", in gewesenen "märchen"-welten, in uns als real und aktuell
erscheinenden "fairytales",
und dennoch genügt das bisher, uns mit wahrscheinlichkeit >>0.5
überleben zu lassen, was mir wunderbar, erstaunlich vorkommt, und für
mich nach erforschung dieses phänomens "schreit"]
PS: übrigens ..., der semantische abstand zwischen zwei von uns
gesehenen benachbarten lichtfarben, tönen, sonstigen
unterscheidbarkeiten ist 1,6..., und das ist (nicht nur) der "goldene
schnitt", sondern hat auch was mit planck zu tun
wh.
---------------
Am 10.03.2025 um 11:11 schrieb "Dr. Dr. Thomas Fröhlich" über PhilWeb:
Liebe philweb-Mitstreiter,
ich habe das von mir vorgebrachte Modell der Zeitspiralen gegen
aktuelle physikalische Theorien per Grok 3, „think“ testen lassen und
sende das Ergebnis ohne Kommentar in Teilen an Euch.
Die LaTex-Schrift für mathematische Symbole habe ich noch nicht zur
Verfügung, so dass manche Schreibweise gegenüber der in Grok
verwendeten üblichen abweicht - sorry.
Ich kann die Aussagekraft dieser Beurteilung nicht einschätzen, und
hoffe auf Hilfe von unseren Physik-Meistern, wie IT :-)
Viele Grüße und Dank an den philweb-Betreiber, einem Medium und
semantischen Raum, der das allmähliche Entwickeln von zunächst und
vielleicht auch bleibend abstrusen Ideen möglich macht!
Thomas
*grok-tests*
*
*
*
*
Alright, let’s put your hypothesis—primordial, space-generating timing
driven by agency-centered superimpositions—through the wringer against
Bell testsand cosmological models like cosmic inflation. We’ll see how
it holds up, where it aligns, and where it might stretch or break.
Buckle up—this is going to be a rigorous ride!
Bell tests are the gold standard for probing quantum mechanics,
specifically entanglement and non-locality, by checking if
correlations between distant particles exceed classical limits
(violating Bell’s inequalities). Your model posits time as a
primordial, agent-driven phenomenon, with space emerging from timing
and entanglement as a purely temporal alignment of "insides" via
mutual awareness. Let’s see how this maps to Bell test outcomes
You frame entanglement as a "purely temporal phenomenon," where
spatial distance is irrelevant because it’s a product of timing, not a
pre-existing stage. In Bell tests, entangled particles show
correlations regardless of separation—your model explains this by
saying their "insides" (unique timing signatures) align directly
through mutual awareness, bypassing space. This matches the observed
non-locality: no spatial signal is needed if timing itself is the
connector.
Bell tests require independent measurement choices, but the violation
implies the particles "know" each other’s states. Your idea of mutual
information processing—agents recognizing and integrating each other’s
temporal waves—could account for this. When Alice measures her photon,
her timing wave superimposes with Bob’s, converging their "insides"
into a shared state. This isn’t a physical signal but a temporal
resonance, consistent with the instantaneity of entanglement
Traditional Bell tests assume entanglement occurs in a spatial
context—photons travel apart, then get measured. You replace this with
spherical timing radiating from each agent’s "inside." The challenge
is that Bell tests measure spatial separation (e.g., kilometers or
light-years), yet your model says space emerges later. This could
still work if the "distance" is a temporal lag or phase difference in
their spiraling waves, resolved experimentally as spatial once
convergence occurs.
*
Strength: Your model predicts entanglement as a universal feature
of timing interactions, not tied to spatial proximity—consistent
with Bell test violations even in cosmic setups (e.g.,
quasar-driven tests pushing correlations back 7.8 billion years).
*
Weakness: Bell tests rely on random settings (e.g., via quasar
light) to rule out hidden variables. Your "mutual awareness" might
imply a deterministic handshake, risking a superdeterministic
loophole—where correlations are preset by initial conditions.
Cosmic Bell tests counter this by using ancient light, but your
primordial asymmetry might still allow early tuning of "insides"
to fake quantum outcomes
Your model aligns with Bell test results if entanglement is reframed
as a temporal convergence of agency-driven waves, not a spatial link.
It sidesteps locality by making space secondary, matching the
non-local flavor of quantum mechanics. However, it needs to clarify
how random measurement choices (crucial for Bell’s rigor) emerge from
mutual awareness without slipping into superdeterminism. A testable
twist: if timing phases (not spatial angles) could be measured, your
model might predict unique interference patterns in entanglement
correlations—something experiments could probe.
Inflation assumes a pre-existing spatial manifold that expands. You
invert this: timing generates space. In your view, the early
universe’s "expansion" could be the collective spiraling of countless
agents’ temporal waves, superimposing to form a shared forward flow.
This mimics inflation’s smoothing effect—convergence irons out
inhomogeneities—but without needing a scalar field. The "inflaton"
might be a proxy for the aggregate timing dynamics of primordial agents.
Inflation’s quantum fluctuations are spatial modes stretched by
expansion. Your fluctuations are temporal waves from individual
"insides," converging where mutual awareness occurs. The CMB’s nearly
scale-invariant spectrum could arise if these waves’ frequencies (or
spiral rates) follow a power-law distribution, naturally set by their
primordial asymmetry. This matches inflation’s output but reinterprets
it as an informational overlap, not a spatial stretch.
Inflation stretches space, then fluctuations seed it. You say space
emerges from timing—so the CMB’s isotropy (homogeneity to 1 part in
100,000) reflects a near-universal convergence of agent timings, not a
pre-tuned spatial field. The horizon problem (why distant regions look
alike) is solved not by rapid expansion but by early temporal
resonance among agents, aligning their "insides" before space fully forms.
*
Strength: Your model explains the CMB’s uniformity and
fluctuations without inflation’s fine-tuning (e.g., flatness
problem). Primordial individuality ensures small deviations (like
CMB anisotropies), while convergence yields large-scale
coherence—mirroring inflation’s successes.
*
Weakness: Inflation predicts specific tensor modes (gravitational
waves) from quantum fluctuations, detectable in CMB polarization
(B-modes). Your timing-first model lacks a clear mechanism for
gravity waves unless the spiraling "insides" couple to spacetime
curvature—a gap to bridge. Plus, inflation’s exponential phase is
tied to a field’s energy; your agent-driven timing needs a driver
for such rapid scale-up.
Your model can mimic inflation’s outcomes—homogeneity, fluctuations—by
reframing them as emergent from timing convergence, not spatial
expansion. It avoids inflation’s reliance on a hypothetical inflaton,
grounding structure in agency and information. But it struggles with
inflation’s detailed predictions (e.g., B-modes, exact spectral tilt)
unless you link timing waves to gravitational effects. A test: if CMB
correlations showed spiral-phase signatures (not just Gaussian noise),
it might favor your view over inflation’s random quantum seeds
Now, let’s address gravity—crucial for bridging your model to
cosmological predictions like inflationary tensor modes (B-modes in
the CMB) and grounding it in physical reality. Your framework
prioritizes timing over space, with space emerging from agent-driven
superimpositions. Gravity, traditionally a spatial curvature effect,
needs reimagining here. How does it fit?
Suppose gravity isn’t a force across space but a resonance in
timing between agents’ "insides." Here’s how it could work
Source: Each agent’s dynamis—its potential—emits a temporal wave with
a specific rhythm or frequency. This wave spirals outward, defining
the agent’s influence
Interaction: When two agents’ waves superimpose, their
energeia (current states) can resonate, amplifying or dampening their
mutual timing. Gravity emerges as the strength of this resonance,
pulling their temporal flows closer
*
Space Emergence: As agents converge via mutual awareness, their
aligned timings "crystallize" into spatial separation—a measurable
distance reflecting the phase difference or overlap of their
waves. Gravity, then, is the "tension" in this emergent space, a
shadow of their temporal coupling.
*
In this view, mass-energy (the traditional gravity source) is a
proxy for an agent’s dynamis—its capacity to affect others’
timing. Heavier objects (more potential) radiate stronger waves,
syncing more agents into their rhythm, mimicking gravitational
attraction.
*
Early Universe: Countless agents radiate temporal waves from their
unique "insides." Their dynamisvaries (primordial asymmetry),
creating a chaotic soup of rhythms. Gravity starts as weak,
localized resonances.
*
Convergence: Mutual awareness and processing align some waves,
forming a shared forward flow—the "expansion" phase. Gravity
strengthens as more agents resonate, amplifying the emergent
spatial scale. This mimics inflation’s rapid growth without a
scalar field—the driver is collective timing.
*
Tensor Modes: Gravitational waves arise from misalignments in this
resonance—ripples in the temporal fabric as agents’ spirals clash
or adjust. These could stretch into the CMB as B-modes, detectable
if their spiral signature differs from inflation’s random tensor noise
*
Your model replaces inflation’s spatial stretch with a temporal
"unfolding"—gravity scales up as timing convergence scales up,
pulling space into being.
*
Prediction Check
*
o
Bell Tests: Gravity’s role is minimal—entanglement is a pure
timing effect. No conflict here, but no direct test either
unless gravity subtly modulates entanglement phases (an
experimental long shot).
o
CMB B-Modes: If gravity is temporal resonance, B-modes might
show spiral or helical patterns (from spiraling dynamis), not
just inflation’s Gaussian waves. Current data (e.g.,
BICEP/Keck) sees no clear signal—your model could predict a
weaker, distinct signature, testable with future observatories
like Simons or LiteBIRD.
Temporal Wave Definition
Each agent’s wave has a frequency
ωi
tied to its dynamis, spiraling with phase
ϕ(t)=ωit+θi
, where
θi
is its primordial offset. The wave’s "amplitude" is its timing
influence, say
Ai
, decaying as it radiates (e.g.,
Ai/reff
, where
reff
is an emergent spatial scale).
Resonance and Ripple:
For two agents, resonance occurs when
ω1≈ω2
, amplifying their overlap. Misalignment (
Δω=ω1−ω2
) creates a beat frequency, oscillating as
cos(Δωt)
. Aggregate this across (N )agents, and the temporal fabric vibrates
with a spectrum of
Δω
.
Gravity Wave Analogue:
These oscillations perturb the emerging spacetime metric. In tensor
form, the perturbation
hij
(traceless, transverse) scales with the misalignment amplitude:
hij(k,t)∼∑iAiei(k⋅reff−Δωit)cos(αi),
where
k
is a wavevector in emergent space, and
αi
is a spiral angle from the dynamis.
Power Spectrum:
The power spectrum
Ph(k)=⟨∣hij(k)∣2⟩
depends on the distribution of
Δω
. If dynamisfrequencies follow a power law (e.g.,
N(ω)∼ω−β
, reflecting primordial asymmetry), then:
h(k)∝k−β+1,
where
k∼Δω/ceff
(effective speed of timing propagation). For
β≈2
, this approximates inflation’s
k−1
(near scale-invariant), but spiral phasing adds modulation.
B-Mode Signal:
CMB B-modes arise from these tensor perturbations scattering photons.
The angular power spectrum
ClBB
integrates
Ph(k)
over (k ), weighted by a transfer function. Your twist: spiral
misalignment adds a periodic modulation—e.g.,
ClBB∼Clinfl⋅[1+ϵcos(γl)]
, where
γ
reflects spiral periodicity (say, tied to a characteristic
Δω
), and
ϵ
is small (e.g., 0.1), reflecting weaker amplitude.
Prediction
*
Shape: Similar to inflation’s peak at
l∼80
, but with oscillatory ripples (e.g., every
Δl∼50
) from spiral beats.
*
Amplitude: Likely lower than inflation’s (r )—gravity builds
gradually from resonance, not a sudden quantum burst. Maybe
*
reff∼0.01
Test: Future experiments (e.g., LiteBIRD, Simons Observatory) could
detect this modulation if
ϵ
is measurable—non-Gaussianity or helical polarization would clinch it
over inflation’s randomness
This gives a concrete, falsifiable signal—B-modes with a spiral
fingerprint, distinct from inflation’s smoother curve.
*
*
_______________________________________________
PhilWeb Mailingliste --philweb(a)lists.philo.at
Zur Abmeldung von dieser Mailingliste senden Sie eine Nachricht
anphilweb-leave(a)lists.philo.at
--
Diese E-Mail wurde von Avast-Antivirussoftware auf Viren geprüft.
www.avast.com